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Abstract

Radio Tomographic Imaging (RTI) is an emerging Device-Free Passive Localization

(DFPL) technology that uses a collection of cheap wireless transceivers to form a Wireless

Sensor Network (WSN). Unlike device-based active localization, DFPL does not require

a target of interest to be wearing any kind of device. The basic concept of RTI utilizes

the changes in Received Signal Strength (RSS) between the links of each transceiver to

create an attenuation image of the area. This image can then be used for target detection,

tracking, and localization. Each transceiver in the WSN must transmit sequentially to

prevent collisions. This is not a problem when the number of transceivers in the WSN

are small. However, large-scale RTI with a large number of transceivers suffer from high

computational complexity, low frame rates, and physical distance limitations on the range

of the transceivers.

The goal of this research is to determine the applicability and characterize the

feasibility of using multiple WSNs to address the limitations with a large-scale RTI

network. The concept to this new variant of RTI, called Multiple-Networks RTI (mnRTI),

is to divide the transceivers into multiple WSNs as opposed to using one WSN. Analytical,

simulated, and experimental data are computed, collected, and compared between a RTI

network with one WSN to a mnRTI network with two WSNs. The WSN(s) comprise a

total of 70 wireless transceivers covering an area of no more than 19 ft × 16 ft. Simulated

and experimental results are presented from a series of stationary and moving target data

collection. Preliminary results demonstrate multiple WSNs can potentially provide similar

or better results than the traditional RTI method with one WSN. Multiple WSNs have

higher frame rates and lower computational complexity. Also, position estimation accuracy

are comparable, if not better, than the traditional RTI method with one WSN.
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CHARACTERIZING MULTIPLE WIRELESS SENSOR NETWORKS FOR

LARGE-SCALE RADIO TOMOGRAPHY

I. Introduction

T
his chapter presents a brief introduction to Wireless Sensor Networks (WSNs) and

Radio Tomographic Imaging (RTI). It discusses the potential applications of RTI,

as well as a limitation which this research attempts to solve. This chapter also defines the

research goal and outlines the structure of this document.

1.1 Research Motivation and Background

As technology continues to advance in creating cheap wireless communication

devices, there is a growing interest in using WSNs for various applications. A WSN is

a collection of sensors populated over an area, each with a radio transceiver capable of

transmitting and receiving information with other transceivers over a wireless frequency.

A base station transceiver collects the information and processes the information into

something useful [1].

Most position tracking research has been focused on device-based active localization,

where a target is carrying an active transmitter of some sort [2]. However, there is an

emerging interest in a different concept called Device-Free Passive Localization (DFPL)

[3]. Unlike device-based active localization, DFPL does not require a target of interest

to be wearing any kind of device. The concept of DFPL uses the fact that changes in the

environment affects Radio Frequency (RF) signals in a wireless network, and these changes

can be used for tracking and localization [3]. DFPL has significant benefits, especially in

situations where an individual may be uncomfortable or does not wish to wear a device.
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RTI is an emerging DFPL technology that uses a collection of cheap wireless

transceivers to form a WSN. The WSN is then used to detect and track objects of interest

within the network [4], [5], [6]. At any given time, a transceiver transmits a RF signal. All

other transceivers within the network are listening, storing the resultant Received Signal

Strength (RSS), and associating this value to the communication link with the transmitting

transceiver. Each synchronized transceiver transmits in sequential order to prevent another

transceiver from reading the wrong RSS. There is a unique communication link between

each pair of transceivers within the WSN. This communication link can be either Line-

of-Sight (LOS) or Non-Line-of-Sight (NLOS), passing through walls, furniture, or most

other obstructions in between the two links [4]. A base station transceiver is connected to

a processing computer to collect the RSS of each unique communication link within the

WSN. The area within the network is divided into a grid of multiple sections, or pixels.

The size of each pixel is defined by the user. A weighting matrix determines how much

weight the RSS on a link affects each pixel within the area. This matrix can be divided

into two parts, a selection matrix and a scalar magnitude matrix [7]. The selection matrix

determines which pixels are affected by a particular link. The scalar magnitude matrix

defines a scalar value to apply to each pixel for that particular link. Whenever a person

or object moves in between two transceivers, they interfere and attenuate the RSS of that

link. The basic concept of RTI is to use the changes in attenuation from the communication

links between transceivers within a WSN to create an image of attenuation changes of the

network area.

There are numerous benefits with RTI. Since RTI is a form of DFPL, any person

or object moving through the network is not required to wear any kind of active device

or even actively participate [8]. Also, RF signals can pass through obstructions, such as

walls and smoke, where other technology like Infrared (IR) or optical cameras cannot [4].

Technologies like Global Positioning System (GPS) also use RF signals, but require the
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target to have an active device [3]. Another benefit with RTI is that it can potentially

operate over almost any kind of weather or lighting conditions, whereas technology like

an optical camera system requires a well-lit environment. There is also less of a privacy

concern with RTI since an attenuation image does not provide any personal identifiable

information about the person or object that is interfering with the RSS [4].

One potential application with RTI is for residential monitoring in elderly care and

assisted-living homes. By monitoring the movement and position patterns of a patient,

healthcare officials can recognize physical and mental health conditions when patients do

something out of the norm [9]. RTI can also potentially detect when a person has fallen,

alerting medical officials without the victim having to actively request for help [10]. RTI

can also potentially detect and track the breathing rate of a person, whether for security,

health care, or search and rescue [11]. Smart homes can also benefit from RTI. By knowing

which rooms are currently being occupied, lighting and climate control can autonomously

be adjusted to meet the needs of the resident [12]. Finally, RTI can also be applied to

security and emergency situations. RTI can be deployed for roadside surveillance, either

for border control or at restricted areas where security officials can determine a potential

threat while at a safe stand-off distance [5]. For a hostage or terrorist situation where special

operation forces have to enter a hostile building, RTI can be a quick and cheap method for

security officials to deploy and determine the location of potential hostiles prior to entering

the building [13].

However, there are a few limitations to the current RTI method. Most research with

RTI uses transceivers that must transmit their signal sequentially to prevent collisions

[4]. This is not a problem when the number of transceivers in the WSN is fairly small.

However, for a large-scale WSN with a substantial number of transceivers, it may take

too long for all transceivers to transmit a signal and obtain one image frame for real-time

applications. Also, the computational complexity in converting the RSS to an attenuation
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image is dependent on the number of unique links between all transceivers in the network

and the number of pixels within the image. The number of unique links within a network

increases quadratically with the number of transceivers [4]. Limited memory space on the

hardware of the transceivers and finite memory space on a processing computer become a

problem for a network with too many transceivers. Transceivers also have limited power,

so there is a physical limit on how far apart transceivers can be placed from one another

before the transmitted RF signal becomes too noisy or weak that another transceiver will

not be able to read the RSS accurately.

For example, if RTI is utilized for intrusion detection of a hangar bay, hundreds of

transceivers may be required to adequately cover the entire bay. There are a few limitations

that the traditional RTI method with one WSN may run into. The number of transceivers

required to cover the entire area may be too large for the available memory space on the

transceivers. The matrix and calculations required to produce an estimated attenuation

image may also be too large for a regular processing computer to handle. Finally, the

transmission range of the transceiver may not be far enough to reach the other end of the

hangar bay. The same limitations can occur if RTI is used for a long narrow pathway, such

as a restricted road, a tunnel, or a hallway. The width of the pathway is short, but the length

may be longer than the maximum transmission range of the transceivers.

In summary, there are three main potential limitations to a large-scale RTI network.

1. Frame Rate: The more transceivers there are in a WSN, the longer it will take to

obtain one frame of data, leading to attenuation images that are less accurate and

updated less frequently.

2. Finite Memory and Computational Complexity: As the number of K transceivers

increases, the number of unique links increases quadratically and the computational

complexity can increase by O(K6) [14]. Finite memory space on the transceivers
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and processing computer become a limitation when the number of transceivers is too

great.

3. Transmission Range: All transceivers have a limited transmission range, depending

on their power and type of environment. The largest RTI area possible is defined by

the maximum transmission range for the transceivers furthest away from each other.

1.2 Research Goal

The goal of this research is to determine the applicability and characterize the

capabilities of using multiple WSNs to address the three main limitations with a large-

scale RTI network. The concept to this new variant of RTI, called Multiple-Networks

RTI (mnRTI), is to divide the transceivers into multiple WSNs as opposed to using the

traditional one WSN. There are numerous potential benefits of using multiple WSNs as

opposed to one. Dividing the number of transceivers will decrease the time required for all

transceivers to transmit their RF signal since each network can operate in parallel, as long

as each network operate under different frequencies. This will decrease the time required

to generate an image frame and increase the frame rate. Less transceivers per network will

also decrease the computational complexity since there are less unique communication

links. However, less unique links between transceivers result in less information available

to create an accurate attenuation image. A poor attenuation image quality may make the

RTI process useless. Finally, dividing a wide area into multiple sections will make the area

of each individual network smaller, allowing for transceivers to be placed further apart.

This opens the possibility for a bigger total coverage area than the traditional one WSN.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter II presents background

information and research related to the field of RTI. The general concept and system model
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for RTI is discussed, along with various methods that have been suggested in literature to

improve the accuracy and image quality of the attenuation images.

Chapter III discusses the methodology and tools used to characterize the capabilities

of using multiple WSNs for RTI. First, the RTI parameters and assumptions made in

this research are stated. Frame rate, computational complexity, and image quality are

the three metrics used to characterize the quality of each network. Image quality is

examined objectively by comparing the Signal-to-Noise Ratio (SNR) and accuracy of

position estimates of each network. An analytical section then looks at the theoretical

comparison between a network with one WSN and a network with multiple WSNs.

Afterwards, the process for generating simulations in MATLABr is discussed, followed

by methods for conducting experiments in a lab environment at the Air Force Institute of

Technology (AFIT).

Chapter IV presents the simulated and experimental results from following the

methodology discussed in Chapter III. The results of a stationary target and moving target

within one or two WSNs are presented as a function of the pattern they move within the

network and the speed at which they move throughout the network. Network configurations

with two WSNs are compared with each other and to a network configuration using the

traditional one WSN.

Finally, Chapter V summarizes the results and provides a conclusion to the capabilities

of using multiple WSNs for RTI. Potential areas for future research are also suggested.
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II. Related Work

T
his chapter presents background information and research related to RTI. Section 2.1

first introduces the history and concept of DFPL. Section 2.2 presents the concept

and system model of RTI. Section 2.3 discusses the various methods of interpreting RSS

data from the transceivers throughout the network. Then, Section 2.4 presents a few weight

matrix models that map RSS from each link to a pixel within the attenuation image that have

been suggested in the literature. Section 2.5 presents different noise models that have been

suggested for RTI. Afterwards, Section 2.6 discusses the actual process of converting RSS

data to an attenuation image and Section 2.7 discusses different regularization techniques

proposed in the literature to apply to the image reconstruction process. Section 2.8 presents

different variations of RTI that have been suggested in the literature. Finally, Section 2.9

presents a model to simulate truth data for a target.

2.1 Device Free Localization

Woyach, Puccinelli, and Haenggi first introduced the idea of using a wireless network

as transceivers to detect motion without the target carrying any kind of active device in

[8]. Shadowing and fading effects experienced from the transceivers are used to detect

motion and estimate velocities. Then, research in [15] expanded on this concept by using

RF signals in a WSN to track position. Youssef, Mah, and Agrawala then introduced the

terminology of DFPL in [3]. DFPL uses the concept that signals in a wireless network are

affected by the changes in the environment. These changes are used to detect the presence

of an object or obstruction.

DFPL has significant benefits. Unlike device-based active localization, DFPL does

not require the target of interest to be wearing any kind of device [3]. This is critical in

situations where an individual may be uncomfortable or unwilling to wear a device. Also,
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for situations like intrusion detection, it is unreasonable to expect an intruder or hostile to

wear any kind of tracking device. Other tracking systems such as video, infrared, pressure,

and ultrasound, do exist and are widely used [15]. However, they typically have a large

footprint, a high cost of installation, infrastructure, and maintenance, or have environmental

requirements such as lighting. DFPL is relatively inexpensive and can leverage preexisting

wireless networks. Advances in Radio Frequency Integrated Circuits (RFICs) have also

resulted in the ability to manufacture low-cost and portable wireless transceivers [4].

However, there are disadvantages to DFPL as well. RF signals are typically subjected

to a strong multipath environment for indoor scenarios [16]. RF signals diffract, reflect,

attenuate, and scatter as they pass through the environment. This multipath environment

can create very noisy signals that any type of tracking or localization method must account

for in its algorithm [3].

2.2 Received Signal Strength Tomography

RTI is an emerging DFPL technology that uses a collection of cheap wireless

transceivers to form a WSN [4]. Each transceiver is capable of transmitting and receiving

RSS from each other. As a target of interest walks through this network area, it obstructs the

links between transceivers. The RSS of the links attenuate and experience a shadow loss.

The basic concept of RTI uses the changes in attenuation between these links to create an

attenuation image map of the area. This image can then be applied to target localization

and track movement.

Wilson and Patwari laid the foundation for setting up a system model for RTI in [4].

There are K wireless transceivers surrounding a particular area to form a WSN. This area

is divided into N number of pixels of size ∆p ×∆p. For K number of transceivers, there are

M =
K(K−1)

2
unique two-way links. Fig. 2.1 shows an example of all the unique two-way

links for a given number of transceivers. Each transceiver transmits a RF signal that passes

through the physical environment of the network, absorbing, diffracting, reflecting, and
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Figure 2.1: Example of unique links within a RTI network with 20 wireless transceivers

[4].

scattering some of the transmitted signal. Other transceivers around the network collects

the resultant signal strength after it has passed through obstructions from the environment

in and around the network.

The RSS in Decibels (dB) on any particular link, l, at a specific time, t, can be modeled

as [4]

yl(t) = Ptr − LF,l − Ldev,l − S l(t) − Fl(t) − ntr,l(t) − nr,l(t) − ne,l(t) − nm,l(t), (2.1)
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where [4]

• Ptr: transmitted power,

• LF,l: static losses due to distance, also referred to as Free Space Path Loss (FSPL)

[17],

• Ldev,l: static losses from hardware inconsistencies, antenna patterns, etc.,

• S l(t): shadowing loss from obstructions attenuating the signal,

• Fl(t): fading loss caused by interference (constructive and destructive) in a multipath

environment,

• ntr,l(t): noise created by the transmitter,

• nr,l(t): noise created by the receiver,

• ne,l(t): noise created by the environment,

• nm,l(t): measurement noise.

The equation for FSPL for link l between two transceivers at a distance d apart is [17], [18]

L̄F,l =

(

4πd f

c

)2

, (2.2)

where d is the distance between the transmitter and receiver, f is the operating frequency

of the transceivers, and c is the speed of light. RSS is normally measured in dB [19], [20],

or 10 log 10 of the power. Therefore, (2.2) is rewritten in dB as

LF,l = 10 log10

(

4πd f

c

)2

,

= 2 · 10 log10

(

4πd f

c

)

,

= 20 log10 (d) + 20 log10 ( f ) + 20 log10

(

4π

c

)

. (2.3)

Equation (2.1) is rewritten as

yl(t, d, f ) = Ptr − LF,l(d, f ) − Ldev,l − S l(t) − Fl(t) − ntr,l(t) − nr,l(t) − ne,l(t) − nm,l(t). (2.4)
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2.3 Measurement Models

2.3.1 Shadowing-Based RSS.

One of the most common measurement technique in RTI is to use a linear system

model and look at only the changes in attenuation at a particular time compared to a

baseline calibration time [4]. This measurement method is called shadowing-based RTI.

A baseline calibration is defined as a set of RSS data collected within the WSN without

any targets present [4]. This may include any static objects (furniture, trees, walls, etc.)

that is typical to the environment. Calibration data consists of collecting RSS for a period

of time to obtain a baseline average RSS for each link. Let yc ∈ RM×1 be the vector

of calibration RSS data. This calibration data provides a baseline set of RSS within an

environment free of any targets of interest.

By measuring the change in RSS, all static variables cancel out, greatly simplifying

the problem. Let ∆yl be the change in RSS for a particular time, t, against the baseline

calibration time, tc. Finding ∆yl using (2.4) yields [4]

∆yl = yl,tc − yl,t, (2.5)

= S l(t) − S l(tc) + Fl(t) − Fl(tc) + ntr,l(t) − ntr,l(tc) + nr,l(t) − nr,l(tc)

+ ne,l(t) − ne,l(tc) + nm,l(t) − nm,l(tc).

(2.6)

Since RTI utilizes the shadowing loss from RSS to create an attenuation image of the area,

fading loss, noise created from the transmitter, noise created from the receiver, noise created

by the environment, and measurement noise can all be grouped together as

nl(t) = Fl(t)−Fl(tc)+ntr,l(t)−ntr,l(tc)+nr,l(t)−nr,l(tc)+ne,l(t)−ne,l(tc)+nm,l(t)−nm,l(tc). (2.7)

Equation (2.6) is updated to

∆yl = S l(t) − S l(tc) + nl(t). (2.8)

Let x ∈ RN×1 be the vector of pixels within an area. A weight matrix converts

the changes in RSS between each transceiver to changes in attenuation per pixel. Let
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W ∈ RM×N be the weight matrix that defines the relationship on how much each pixel is

affected by a particular link. Shadowing loss can be written as approximately the sum in

RSS experienced at each pixel, p, [4]

S l(t) =

N
∑

p=1

wl,pxp(t), (2.9)

where wl,p is the weight on pixel p affected by link l and xp(t) is the attenuation on pixel p

at time t. Applying (2.9) to (2.8) yields

∆yl =

N
∑

p=1

wl,pxp(t) −
N

∑

p=1

wl,pxp(tc) + nl(t), (2.10)

=

N
∑

p=1

wl,p∆xp + nl(t), (2.11)

where ∆xp ∈ RN×1 is the vector of changes in attenuation at each pixel between the current

time, t, and calibration time, tc.

Finally, the system model for RTI is written in matrix form as [4], [16], [21]

y =Wx + n, (2.12)

where

y = [∆y1,∆y2, · · · ,∆yM]T
,

[W]l,p = wl,p,

x = [∆x1,∆x2, · · · ,∆xN]T
,

n = [n1, n2, · · · , nM]T
.

(2.13)

2.3.2 Variance-Based RSS.

Instead of measuring the change in RSS between a baseline calibration period and

current RSS, [22] suggested taking the variance in RSS as a more accurate approach for

through-wall and NLOS RTI scenarios. In a strong multipath environment without LOS

transceivers, a target does not have as profound of an effect on obstructing a link as with
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LOS transceivers. The variance in RSS increases, even though the mean RSS does not

change much [23]. As opposed to taking the change in RSS in (2.8), Variance-Based

RTI (VRTI) takes the variance in RSS over a discretized time window period with V

samples as [24]

yl =
1

V − 1

V−1
∑

w=0

(

yl[t] − yl[t − w]
)2
, (2.14)

yl[t] =
1

V

V−1
∑

w=0

yl[t − w]. (2.15)

The vector of RSS links, y, in (2.13) is updated to

yVRT I =
[

y1, y2, · · · , yM

]T
. (2.16)

The experiments in [22] showed VRTI was capable of identifying areas of motion in

through-wall scenarios where shadowing-based RTI was not as effective. VRTI also does

not require a calibration time to collect RSS without any targets of interest in the network,

making it more applicable for real-world situations. The limitation with VRTI, however, is

that it is less accurate for targets with little or no motion.

2.3.3 Kernel Distance RSS.

Another measurement model in [23], called Kernel Distance-Based RTI (KRTI),

suggested a hybrid of shadowing-based RTI and VRTI by taking the histogram of RSS

for each link. KRTI takes a long-term histogram, hlt, and short-term histogram, hst, of RSS

values to determine which links have been obstructed by a target. The histograms are a

collection of RSS values for a certain period of time with a user-defined weight indicating

the length of the time window to store previous RSS values. The kernel difference between

the two histograms for link l is calculated using the equation [23]

∆(hl,st, hl,lt) = hT
l,stKhl,st + hT

l,ltKhl,lt − 2hT
l,stKhl,lt, (2.17)

13



where K is a Gaussian or Epanechnikov kernel matrix. The vector of RSS links y in (2.13)

is updated to

yKRT I =
[

∆(h1,st, h1,lt),∆(h2,st, h2,lt), · · · ,∆(hM,st, hM,lt)
]T
. (2.18)

The experiments in [23] showed that KRTI was able to effectively detect both stationary

and moving targets without the need of an offline calibration time period, making it more

robust than shadowing-based RTI and VRTI. The limitation with KRTI is that a stationary

target will eventually fade away if it stays in one position for longer than the long-term

histogram.

2.4 Weight Models

The weight matrix, W, can be broken down into two parts as [5], [7]

W = Ω ⊙ S, (2.19)

where Ω is a matrix of scalar magnitudes indicating how much weight a link affects each

pixel, ⊙ is the element-wise Hadamard multiplication, and S is a binary selection matrix to

determine which pixels are affected by a particular link [7]. There are a number of proposed

weight models to determine how much weight a link has on each pixel in the literature. The

remainder of this section describes a few of them.

2.4.1 NeSh Normalized Ellipse Model.

The Network Shadowing (NeSh) Normalized Ellipse model was the initial weight

model suggested for RTI in [4] and is currently the most commonly used weight model in

the literature. It was used in [4], [9], [16], [21], [22], [23], [25], [26], [27], [28]. The NeSh

model suggests that the weight from a link to a pixel is inversely proportional to the square

root of the distance between the link. The shorter the link, the more accurate the data is and

the more weight applies to each affected pixel. The NeSh model uses a magnitude matrix,

ΩNeS h, of [7]

ΩNeS h
l,p =

1
√

dl

, (2.20)
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where dl is the distance between the two transceivers for link l. The selection matrix, SEllipse,

uses an ellipse with a foci around each transceiver to determine which pixels are selected

[4]. This model suggests that pixels on and close to the path of a link are affected by the

changes in attenuation experienced by that link. SEllipse can mathematically be shown as

[7]

S
Ellipse

l,p
=































1, if dl,pcenter(1) + dl,pcenter(2) < dl + λ

0, otherwise

, (2.21)

where dl,pcenter is the distance between the transceiver and the center of pixel p and λ is a

tunable parameter that defines the width of the ellipse. Fig. 2.2 shows an example of the

pixels selected according to the SEllipse selection matrix for a particular ellipse width [4].

The final equation for the NeSh model is represented as [4]

WNeS h
l,p =

1
√

dl































1, if dl,pcenter(1) + dl,pcenter(2) < dl + λ

0, otherwise

. (2.22)

2.4.2 Line Model.

The Line model was another weight model discussed and used in [5], [6], [29]. This

model is computationally cheap to implement [5]. The Line model suggests the weight

from a link to a pixel is the segment length of the link that passes through the pixel. To

determine which pixels are affected, this model suggests that only the pixels that the link

actually traverses through are affected by the link. This model has a magnitude matrix,

ΩLine, of [6]

ΩLine
l,p = S Ll,p, (2.23)
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Wireless Transceiver
Ellipse
Link
Selected Pixel
Unselected Pixel

Figure 2.2: Example of pixels selected for a particular link between two transceivers for

the SEllipse selection matrix [4].

where S Ll,p is the segment length of the link l that traverses through pixel p. The selection

matrix, SLine, for this model is [6]

SLine
l,p =































1, if link l traverses through pixel p

0, otherwise

. (2.24)

Fig. 2.3 shows an example of the pixels selected according to the SLine selection matrix.

The final equation for the Line model is represented as

WLine
l,p = S Ll,p































1, if link l traverses through pixel p

0, otherwise

. (2.25)

2.4.3 NeSh Line Model.

The NeSh Line model is a hybrid of the two weight models mentioned in Section 2.4.1

and Section 2.4.2, using a mix of the two magnitude matrices and the line selection matrix,
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Wireless Transceiver
Link
Selected Pixel
Unselected Pixel

Figure 2.3: Example of pixels selected for a particular link between two nodes for the SLine

selection matrix [4].

SLine. This model was used in [30], [31] and is represented as

WNeS hLine
l,p =

S Ll,p√
dl































1, if link l traverses through pixel p

0, otherwise

. (2.26)

2.4.4 Exponential Decay Model.

The Exponential Decay model was introduced and used in [32]. It suggested an ellipse

width that changes with respect to the distance between an obstruction and that link. This

model is represented as [29]

W
Exp

l,p
= e

−
λl,p

2σλ































1, if λl,p ≥ 0

0, otherwise

, (2.27)

where σλ is a tunable parameter that controls the decay rate of attenuation with respect to

λ.
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2.4.5 Inverse Area Model.

The Inverse Area model is similar to the Exponential Decay model, but suggests that

some areas within the ellipse are affected more by the link than other areas [33]. RF signals

along the edge of the ellipse travel a further distance than when they travel directly LOS

through the center of the ellipse and should have less of a weight. Therefore, the weight on

each pixel is affected by the inverse area of the ellipse [33]. The Inverse Area model was

used in [34], [35], [36] and is represented as

WInvArea
l,p =

1

Al































1, if dl,pcenter(1) + dl,pcenter(2) < dl + λ

0, otherwise

, (2.28)

where Al is the area of the ellipse defined by dl and λ.

2.5 Noise Model

The central limit theorem states that the sum of an infinite number of Independent and

Identically Distributed (IID) random variables will converge to a random variable that is

Gaussian in distribution [18], [37]. Furthermore, [37] states that the random variables does

not necessarily have to be identically distributed, as long as one term does not dominate the

sum. For a large, but finite number of random variables, the sum is approximately Gaussian

in distribution.

Fading loss caused by deep fade and anti-fade in a multipath environment is difficult

to measure and considered a nuisance parameter. All other noise parameters are assumed to

have a Gaussian distribution. Applying the central limit theorem to (2.7), the sum of these

random variables can be modeled as a single Gaussian distribution for nl(t) [18], [37].

Experiments were also conducted in [4], [7], [38] to model noise. Experimental data

in [4] suggested a mixture of two Gaussian distributions for modeling noise. The first

Gaussian distribution has a probability of 0.548 and standard deviation of σn = 0.971 dB.

The second distribution has a probability of 0.452 and standard deviation of σn = 3.003
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dB. However, research in [38] stated that while a skew-Laplacian noise model is a more

accurate representation of the noise measured, Additive White Gaussian Noise (AWGN)

was sufficient enough for RTI position tracking. AWGN is a typical distribution used to

model noise [30], [32], [39]. Experimental data from [7] found that an AWGN model with

a standard deviation of σn = 4 dB or 6 dB was a good fit for their transceivers, which are

the same as those used in this thesis.

2.6 Image Estimation

A common estimation method to obtain an optimal solution is the least squares

solution. The least squares solution to (2.12) is [4]

x̂LS = argmin
x

‖Wx − y‖22. (2.29)

Taking the gradient of (2.29) and setting it to equal zero yields [4]

x̂LS =
(

WT W
)−1

WT y. (2.30)

The problem with the least squares solution is that it only exists if W is full rank, which

normally is not the case for RTI. RTI is an ill-posed inverse problem where small singular

values can potentially lead to large errors and meaningless estimates [21]. Regularization

is a method commonly used to solve ill-posed problems [40]. Regularization is a technique

applied to inverse problems that involves adding extra information to a matrix that is not

full rank to make the data more useful [4].

2.7 Regularization

Numerous regularization techniques exists in the literature aimed at solving ill-

posed problems [40]. However, certain regularization techniques are complicated and

computationally expensive. The image reconstruction process must be fast enough to

provide quick updates of estimated attenuation images for real-time RTI applications.

Small computational requirements, while preserving accuracy, are important properties
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when choosing an ideal regularization technique for RTI. A few simple linear regularization

methods are discussed in the rest of this section.

2.7.1 Linear Back Projection.

Linear back projection was suggested in [25] as the simplest image reconstruction

technique to deal with the ill-posed problem by using WT as a mapping between the

shadowing loss and pixels. Mathematically, this is shown as

x̂LBP =WT y. (2.31)

However, [25] found that this technique did not take the profound effect of noise into

account and did not produce accurate images.

2.7.2 Tikhonov.

Tikhonov regularization is a well-known regularization technique and is most

commonly used in RTI [4], [21], [25]. The objective function of Tikhonov regularization

is represented as [4], [21]

f (x) =
1

2
‖Wx − y‖2 + α‖Qx‖2, (2.32)

where α is a tunable regularization parameter and Q is the Tikhonov matrix. The

regularization parameter, α, affects the quality of the regularization [25]. The higher the

regularization parameter, the smoother the image becomes and the more actual attenuation

from obstructions becomes lost. The lower the regularization parameter, the more noise is

contained within the image. The regularization parameter is usually determined ad-hoc and

must balance between smoothing too much of the image and an acceptable noise tolerance.

Taking the derivative of (2.32) and setting it to zero yields the regularized least squares

solution as [4], [21]

x̂T IK = ΠT IKy, (2.33)

ΠT IK =
(

WT W + αQT Q
)−1

WT
. (2.34)

There are a couple methods explored in the literature to compute Tikhonov regularization.
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First-Order Tikhonov. The First-Order Tikhonov regularization is a commonly used

Tikhonov regularization technique in RTI and was used in [4], [5], [21], [22], [7], [25],

[29], [41]. The gradient of the image is penalized in First-Order Tikhonov regularization.

By penalizing the energy found in each first derivative, noise spikes are suppressed and

a relatively flat image is produced [42]. In RTI, a difference matrix is typically used to

approximate the first derivative of the Tikhonov matrix. The First-Order Tikhonov matrix

is represented as [14]

Q = DT
HDH + DT

VDV , (2.35)

where DH is the difference operator in the horizontal direction and DV is the difference

operator in the vertical direction. Incorporating (2.35) to (2.34) yields the least squares

solution using First-Order Tikhonov regularization as

x̂FOT IK = ΠFOT IKy, (2.36)

ΠFOT IK =
(

WT W + α
(

DT
HDH + DT

VDV

))−1
WT
. (2.37)

Second-Order Tikhonov. Similar to First-Order Tikhonov regularization, the Second-

Order Tikhonov regularization penalizes the second derivative of the image. Penalizing the

energy found in the second derivative suppresses the noise and produces a relatively smooth

image [42]. Again, a difference matrix can be used to approximate the second derivative.

The Second-Order Tikhonov matrix is represented as

Q = DT
2HD2H + DT

2VD2V , (2.38)

where D2H is the second-order difference operator in the horizontal direction and D2V is the

second-order difference operator in the vertical direction. The least squares solution using

Second-Order Tikhonov regularization is

x̂S OT IK = ΠS OT IKy, (2.39)

ΠS OT IK =
(

WT W + α
(

DT
2HD2H + DT

2VD2V

))−1
WT
. (2.40)

21



2.7.3 Covariance Matrix.

Another common regularization method uses the a priori covariance matrix, Cx, and

the variance in the noise, σ2
n. The covariance matrix was used in [9], [16], [23], [27], [28],

[34], [35], [36]. Cx is computed by using an approximation of the Poisson process, which is

common for estimating random placement of objects [4]. Cx is computed as an exponential

decay function [16]

[Cx]p1,p2
= σ2

xe

(

− dp1,p2
δc

)

, (2.41)

where σ2
x is the variance of the pixel attenuation, dp1,p2

is the distance between pixel p1 and

pixel p2, and δc is a tunable correlation parameter, similar to α in Tikhonov regularization

[16]. The least squares solution using the covariance matrix is [9]

x̂Cov = ΠCovy, (2.42)

ΠCov =
(

WT W + σ2
nC−1

x

)−1
WT
. (2.43)

2.7.4 Truncated Singular Value Decomposition.

Truncated Singular Value Decomposition (TSVD) is a regularization technique that

limits the dimensionality of the weight matrix W and was discussed in [21], [40]. The

benefits of TSVD is that it is intuitive and easy to compute if the matrix can be broken down

into its Singular Value Decomposition (SVD). However, research in [21] found that TSVD

regularization technique produced much noisier images than Tikhonov regularization. In

the case of RTI, W can be broken up into its SVD as [21]

W = UΛVT
, (2.44)

where U is a unitary matrix, Λ is the diagonal matrix containing singular values, and V is

a unitary matrix [21]. Plugging (2.44) into (2.30) yields [21]

x̂TS VD = VΛ−1UT y =

N
∑

j=1

1

θ j

uT
j yv j, (2.45)
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where θ j is the jth diagonal element of Λ. In TSVD, only the largest i singular values are

computed to recreate the image. Therefore, (2.45) is rewritten as [21]

x̂TS VD = ΠTS VDy, (2.46)

ΠTS VD =

i<N
∑

j=1

1

θ j

uT
j v j = ViΛ

−1
i UT

i . (2.47)

2.8 Variations of RTI

Several variations of RTI have been suggested in the literature to improve or optimize

the localization accuracy of RTI. The remainder of this section presents some of them.

2.8.1 Channel Diversity RTI.

Indoor environments typically contain a highly multipath environment due to

numerous obstructions. Communication links are reflected, diffracted, scattered, and

shadowed by numerous indoor objects [43]. Depending on the frequency, the link can

either be in anti-fade, where phasor sum of the RSS is constructive, or deep fade, where

the phasor sum of the RSS is destructive. For RTI, it is ideal for communication links to be

in anti-fade to receive the strongest RSS possible for each link and obtain the most reliable

attenuation values [16]. Links in deep fade can create a variance in RSS even when there

are no targets interfering with the link. When a target is standing in between the link in

deep fade, the RSS may not change at all or actually go up on average [22].

The research in [16] suggested using multiple frequencies or channels to improve

localization accuracy. Channel Diversity RTI (cdRTI) in [16] used the shadowing-based

RTI method to measure RSS in calibration mode, but measured RSS for a user-defined

number of channels. Packet Reception Rate (PRR) method and fade level method were

the two methods suggested to select the m number of best channels to use. In the PRR

method, the m number of channels with the best PRR were selected for each link during

calibration. For the fade level method, the average RSS was measured for each channel and
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the m channels with the highest RSS were selected. The RSS of the m highest values were

then averaged to obtain a vector of RSS.

The results in [16] showed much greater localization accuracy compared to the

traditional single channel RTI method. The disadvantage with this method, however, was

that more time was required to collect RSS since each transceiver had to transmit its signal

m number of times for each channel.

2.8.2 Directional RTI.

Another variation of RTI used transceivers with electronically-switched directional

antennas instead of common omnidirectional antennas [26]. The direction, angle, and

frequency of the transceivers affect the link strength and cause destructive or constructive

interference as mentioned in Section 2.8.1. Directional RTI (dRTI) was proposed in [26]

and used electronically-switched directional antennas with six different directions. The

research determined that dRTI was able to provide greater changes and variances in RSS

when an obstruction was interfering with the links than omnidirectional antennas. However,

this method had a greater overhead cost since the electronically-switched directional

antenna required more energy and more communication links were needed to determine

the best antenna directions.

2.8.3 Dial-It-In RTI.

Similar to dRTI, the research in [36] suggested installing RF transceivers on servo

motors that could autonomously reposition the transceivers in eight different positions. The

servo motors autonomously moved the transceivers to obtain the position with the greatest

anti-fade link measurements during calibration time. This research was able to increase

position estimation accuracy over the traditional RTI method by rotating the transceivers to

a better position.
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2.8.4 3-D RTI.

In almost all previous RTI research, wireless transceivers were placed at the same

height in a WSN. The research in [29] created a WSN with transceivers at four different

heights to create a Three-Dimensional (3-D) RTI network. Using shadowing-based RTI,

this research demonstrated that RTI can be applied to not only determine the position of

a target, but possibly also extract target features such as height and density [29]. Another

research utilizing the 3-D RTI network had a layout of transceivers with two different height

positions [10]. By imaging multiple layers within the network with respect to height, this

research showed a proof-of-concept that a 3-D RTI network could detect whether a person

was standing, sitting, or lying down.

2.9 Cylindrical Human Model

An actual truth attenuation image is very difficult, if not impossible, to create because

the size, shape, clothing, etc., of a target and the surrounding environment will affect

the estimated attenuation image. Since there is no actual truth attenuation image, a

representative truth image must be created for simulations and to compare quality of

estimated attenuation images. The research in [4] suggested a simple model called the

uniformly attenuating cylindrical human model. Given the position of a target at (xT , yT ),

the modeled attenuated truth image is calculated as [4]

xp =































1, if ‖xpcenter − (xT , yT )‖ < RT

0, otherwise

, (2.48)

where xp is the pth pixel, xpcenter is the position at the center location of the pixel, and RT

is the radius of the human model. This model was used in [4], [6], [29].
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III. Methodology

T
his chapter discusses the methodology utilized in this research to determine the

applicability and characterize the capabilities of using multiple WSNs for RTI.

First, Section 3.1 and Section 3.2 present the parameters and assumptions made in this

research. Section 3.3 presents the metrics used to characterize and compare different

WSN configurations in this research. Section 3.4 discusses the analytical method for

combining RSS information from multiple WSNs to create one combined attenuation

image, as well as present the theoretical relationship between transceivers, links, and

computational complexities. Section 3.5 and Section 3.6 present the various network

configurations, stationary positions, and moving patterns conducted in this research to

obtain a representative sample of the entire network. Section 3.7 explains the process

for generating simulated RSS data for stationary and moving targets. Finally, Section 3.8

concludes the chapter by presenting the tools used to create multiple WSNs and the

methodology for conducting live experiments at AFIT.

3.1 Parameters

This research uses the linear system model (2.12) in Section 2.3.1 with the shadowing-

based RSS measurement model. This research also utilizes the Line weight model because

it is computationally cheap to implement and does not require the input of an extra variable

λ that defines the width of an ellipse. First-Order Tikhonov regularization has shown to

provide good regularization for suppressing noise in RTI and has the flexibility to change

the degree of suppression by altering α values. For that reason, this research uses First-

Order Tikhonov regularization to find the least squares solution. For a pixel size of 0.5

ft × 0.5 ft or 1.0 ft × 1.0 ft, research in [29] discovered a regularization value of α = 75

provided attenuation images with a good balance between suppressing noise while keeping
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the target still clearly identifiable. Therefore, all attenuation images in this research use a

regularization parameter of α = 75 and have a pixel size of 0.5 ft × 0.5 ft. In summary, this

research utilizes the following parameters [29]

• System Model: y =Wx + n

• Measurement Model: y = [∆y1,∆y2, · · · ,∆yM]T

• Calibration: yc = [ȳc,1, ȳc,2, · · · , ȳc,M]T

• Weight Model: WLine
l,p
= S Ll,p



























1, if link l traverses through pixel p

0, otherwise

• Estimator: x̂FOT IK = argmin
x

(

1
2
‖Wx − y‖2 + α‖Qx‖2

)

• Tikhonov Matrix: Q = DT
H

DH + DT
V

DV

• α: 75

• Pixel Size: 0.5 ft × 0.5 ft

3.2 Assumptions

The following assumptions are made in this research [29]

1. n ∼ N
(

0, σ2
nIM

)

.

2. y|x ∼ N
(

Wx, σ2
nIM

)

.

3. Calibration data for the network is available.

4. Transmitted power and static losses are constant and are canceled out when

computing the change in RSS.

5. There is always one target within the network.

6. Target is big and tall enough to obstruct the LOS of transceivers.

7. RSS attenuation is uniform over the area of a pixel.

8. All transceivers are designed and manufactured exactly the same way and so all

transceivers function the same way.
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9. Transceivers transmit in sequential order instead of simultaneously and, therefore,

there is a linear relationship between the number of transceivers and time required

for all transceivers to transmit their RF signal.

10. For simulations, the BaseStation transceiver is always within range of the transceivers

in the WSN(s) and there are never any dropped RSS packets.

3.3 Metrics

Frame rate, computational complexity, and image quality are the three metrics utilized

in this research to characterize each RTI network configuration. The remainder of this

section describes each metric.

3.3.1 Frame Rate.

The time required for all transceivers to transmit their RF signal and obtain one frame

of data is used as a metric to compare the capabilities of each RTI network configuration.

The higher the frame rate, the quicker a set of RSS data is acquired and the more often

information is updated to the user. Frame rate is critical for real-time applications of RTI

where time is a factor, such as in emergency or security situations.

3.3.2 Computational Complexity.

In RTI, the limits of computational complexity on a computer is calculating the Π

matrix. As the number of transceivers increases in the WSN, the computational complexity

can increase by O(K6) [14]. Therefore, computational complexity can become a choke

point in large-scale RTI networks. Any processing computer has a finite amount of

memory and can only perform calculations on matrices up to a certain size. This limitation

determines a maximum number of transceivers that can be deployed in the network, which

affects the maximum coverage area possible for the network or the density of transceivers.

Therefore, computational complexity of computing the least squares solution in (2.36) is

another metric used to compare each RTI network configuration.
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3.3.3 Image Quality.

Image quality is the final metric used in this research to compare each RTI network

configuration. Image quality, subjectively or objectively, determines whether the estimated

attenuation image is of any use. An image with too low of a resolution or too much

noise does not provide any useful information for a user, making the system useless. This

research takes an objective approach on determining image quality by comparing the SNR

and accuracy in position estimates between each attenuation image.

3.3.3.1 Signal-to-Noise Ratios.

SNR is a common image quality comparison technique to quantify the quality of an

estimated image with a truth image. However, since there is no actual truth data to compare

each estimated attenuation image with, the uniformly attenuating cylindrical human model

described in Section 2.9 is used to generate representative truth images. Research in [4]

used the uniformly attenuating cylindrical human model with radius RT = 1.3 ft.

SNR. SNR is a very common metric used to compare the quality of the intended

signal to a noisy signal. Applying this metric to RTI, the truth image uses the uniformly

attenuating cylindrical human model with RT = 1.3 ft and the noisy image is the estimated

attenuation image. Mathematically, this is shown in dB as

S NR = 10 log10





















Var(xtruth)

1
NH NV

∑NH

i=1

∑NV

j=1

(

xtruth,i, j − xest,i, j

)2





















, (3.1)

where NV is the number of pixels in the vertical direction, NH is the number of pixels in the

horizontal direction, xtruth is the pixel within the truth image, and xest is the pixel within the

estimated attenuation image.

PSNR. Peak Signal-to-Noise Ratio (PSNR) is a well-used metric to compare image

quality [44], [45]. However, since there is no truth data to compare the estimated image

with, a slightly modified version of PSNR is used to characterize the estimated attenuation

image. For this situation, PSNR is computed by finding the maximum intensity value
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within a 1.3 ft radius of the true position of the target squared over the variance of the rest

of the estimated attenuation image. Any attenuation values outside the 1.3 ft radius of the

true position of the target is noise. This can mathematically be shown in dB as [46]

PS NR = 10 log10

[

Max(xT )2

Var(xnT )

]

, (3.2)

where xT ⊂ x is the subset of pixels within 1.3 ft of the radius of the true position of the

target and xnT ⊂ x is the subset of pixels that is not within 1.3 ft of the true position of the

target.

3.3.3.2 RMSE.

While position estimation is not the focus of this research, it does provide an objective

metric on determining the quality of the estimated attenuation image. This research

compares the estimated location of the target with the actual location of the target as another

metric to determine image quality. Root Mean Squared Error (RMSE) is used to determine

how well each network is able to accurately estimate the position of the target. Position

error is first computed by finding the Euclidean distance between the estimated position of

the target and the actual position of the target as

ǫd = ‖(x̂, ŷ) − (xT , yT )‖, (3.3)

where (x̂, ŷ) is the estimated position of the target and (xT , yT ) is the true position of the

target. The Mean Squared Error (MSE) is calculated by summing the squared position

error, ǫ2
d
, for each data frame and dividing by the total number of position estimates. This

is mathematically shown as

MS E =
1

N f

N f
∑

f=1

ǫ
2
d, f , (3.4)

where N f is the total number of frames for the experiment and ǫd, f is the position error for

frame f . The RMSE is then simply the square root of (3.4) as

RMS E =
√

MS E. (3.5)
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This research uses three simple position estimation techniques to compare with the true

position.

Maximum Value. A simple position estimation technique is to find the pixel with

the maximum intensity value within the estimated attenuation image and use the center of

that pixel as the position of the target. This method was used in [16], [29] and can be shown

as [23]

pcenter = argmax
p

xp. (3.6)

1-D Projection. One-Dimensional (1-D) projection is a technique used to reduce the

dimensionality of an image and potentially increase SNR [47], [48]. Therefore, another

simple method for estimating the position of a target is to apply a 1-D projection to the

estimated attenuation image in the vertical and horizontal directions. This is accomplished

by summing all the rows of an estimated attenuation image and taking the maximum

intensity pixel as the estimated x̂ position. Similarly, the columns of the estimated

attenuation image are summed to find the maximum intensity pixel as the estimated ŷ

position.

Gaussian Kernel. A Gaussian kernel smoothing filter is typically applied to blur an

image and suppress any noise spikes [49]. This method was also used in [34] to denoise an

estimated attenuation image. Mathematically, the Gaussian kernel is shown as [34]

G(x, y) =
1

2πσ2
G

e
− x2+y2

2σ2
G , (3.7)

where σ2
G

is the variance of the Gaussian kernel. For this research, a symmetric Gaussian

kernel filter is used to help smooth the noisy estimated attenuation image prior to finding

the maximum intensity value as the position estimate. Each attenuation image is filtered by

a [5 × 5] Gaussian kernel filter matrix. From prior experiments, σG = 2 for the Gaussian

kernel provided an ideal balance between reduction in noise without smoothing too much
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of the target. The values for the Gaussian kernel filter matrix is

G(x, y) =
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. (3.8)

3.4 Analytical

3.4.1 Updated System Model.

As mentioned in Section 2.3.1, for a traditional RTI scenario with one WSN, y ∈ RM×1

represents the vector of RSS. W ∈ RM×N is the weight matrix and x ∈ RN×1 is the vector of

pixels within the WSN.

The traditional RTI system model needs to be updated for a scenario where there

are more than one WSN. For two WSNs, let y1 ∈ RM1×1 be the vector of RSS link

measurements of the first network where M1 is the total number of unique links within

the first network. Also, let W1 ∈ RM1×N1 be the weight matrix and x1 ∈ RN1×1 be the

vector of pixels of the first network where N1 is the total number of pixels within the first

network. Similarly, let y2 ∈ RM2×1 be the vector of RSS link measurements, W2 ∈ RM2×N2

be the weight matrix, and x2 ∈ RN2×1 be the vector of pixels for the second network

where M2 is the total number of unique links and N2 is total number of pixels within

the second network. All pixels within this combined network area is in either x1, x2, or

both depending on if the two WSNs are overlapping each other. x1 can be split into x1s

and x1k, where x1s ∈ RN1s×1 represents the vector of pixels that are solely within the first

WSN and x1k ∈ RN1k×1 represents the vector of pixels that are present in both networks.

Similarly, x2 can be split into x2k and x2s, where x2k ∈ RN2k×1 represents the vector of pixels

that are present in both networks and x2s ∈ RN2s×1 represents the vector of pixels that are

solely within the second network. Since x1k and x2k contain the same pixels, let x1k = x2k =
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xk ∈ RNk×1 represent the vector of pixels that are present in both networks. Fig. 3.1 shows

an example of the three different pixel regions within an area with two WSNs.

The weight matrix for each network can also be divided into two regions,

corresponding with the pixel regions. W1 can be split into W1 = [W1s|W1k] and W2 can

be split into W2 = [W2k|W2s], where W1k and W2k represent a subset of their entire weight

matrix, respectively, that contains the pixels, xk, that overlap in both networks. The new

linear model that incorporates two WSNs is shown as
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+ n, (3.9)

y =Wx + n, (3.10)

where y ∈ R(M1+M2)×1 are the RSS link measurements of both networks, W ∈

R(M1+M2)×(N1s+Nk+N2s) is the combined weight matrix, x ∈ R(N1s+Nk+N2s)×1 is the combined

image to be estimated, and n ∈ R(M1+M2)×1 is AWGN. This updated model can be used to

find the least squares solution for an attenuation image with two WSNs in the same way as

the traditional RTI model.

3.4.2 Unique Links.

For the traditional RTI method with one WSN, there are M =
K(K−1)

2
unique links

where K is the number of transceivers within the WSN. If the total number of transceivers

in one WSN is divided evenly for two WSNs, then each WSN will have K
2

transceivers.

The total number of unique links for each network is

M1 = M2 =

K
2

(

K
2
− 1

)

2
, (3.11)

where M1 and M2 is the number of unique links in the first network and second network,

respectively. Multiplying (3.11) by two networks will give the total number of unique links
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Figure 3.1: Pixel regions between 2 WSNs.

for both networks. This is mathematically shown as

M1 + M2 = 2

K
2

(

K
2
− 1

)

2
. (3.12)

The ratio in total number of unique links between two WSNs and one WSN is

M1 + M2

M
=

2
K
2 ( K

2
−1)

2

K(K−1)

2

=

(

K
2
− 1

)

K − 1
=

1
2

(K − 2)

K − 1
=

1

2

(

K − 2

K − 1

)

. (3.13)

The ratio in unique links between two WSNs and one WSN is ≈ 1
2

for K ≫ 2. The ratio

in unique links can be expanded to z number of networks. Using the same number of

transceivers in one network, K, and dividing it evenly among each network, the ratio of

unique links between z WSNs and one WSN is

M1 + · · · + Mz

M
=

z
K
z ( K

z
−1)

2

K(K−1)

2

=

(

K
z
− 1

)

K − 1
=

1
z

(K − z)

K − 1
=

1

z

(

K − z

K − 1

)

. (3.14)

The ratio in links between having z WSNs and one WSN is approximately inversely

proportional to the number of networks, or ≈ 1
z

for K ≫ z.
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3.4.3 Frame Rate.

The protocol in this research uses transceivers that transmit their RF signal in

sequential order to prevent collisions. More information on the transceiver is discussed

in Section 3.8.1. Assuming all transceivers are designed exactly the same and function the

same, each transceiver should take the same amount of time to transmit a signal before

moving to the next transceiver within a WSN. The size of the data package transmitted

from each transceiver is also dependent on the number of transceivers within the WSN.

Therefore, while there is not a direct linear relationship between the number of transceivers

and the time it takes for all transceivers to transmit their RF signal, a network with twice

as many transceivers will take roughly twice as long for all transceivers to transmit their

RF signal. Similarly, a network with z times more transceivers will take roughly z times as

long for all transceivers to transmit their RF signal.

3.4.4 Computational Complexity.

Computing an estimated attenuation image for RTI requires calculating the least

squares solution with a regularization parameter. Typically, the Π matrix can be computed

offline. However, there are certain situations and regularization techniques that require

the calculation of the Π matrix online during real-time data collection. Using First-Order

Tikhonov regularization, (2.36) and (2.37) must be computed. Table 3.1 shows the brute

force computational complexity for each step in computing (2.36) and (2.37) for a network

with z WSNs. Nzt is the total number of pixels within the combined estimated image of z

WSNs and M1 + · · · + Mz = Mzt is the number of unique links within z WSNs. Depending

on the software and hardware of the processing computer, these steps can be optimized.

However, that is not the focus of this research.

If the total number of transceivers, K, used in the network with one WSN and the

network with two WSNs are the same, the ratio in computational complexity between one
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Table 3.1: Theoretical computational complexity.

Step z Network(s)

(I) Compute: Q = DT
H

DH + DT
V

DV O(N2
zt)

(II) Multiply: α · (I) O(N2
zt)

(III) Compute: WT W O(N2
zt · zMzt)

(IV) Add: (III) + (II) O(N2
zt)

(V) Invert: (IV)−1 O(N3
zt)

(VI) Multiply: (V) ·WT O(N2
zt · zMzt)

(VII) Multiply: (VI) · y O(Nzt · zMzt)

Total O
(

N3
zt + 2zN2

zt Mzt

)

WSN and two WSNs is

CompOne

CompTwo

=
N3 + 2N2M

N3
2t
+ 4N2

2t
M2t

, (3.15)

where N is the total number of pixels in the network with one WSN, M is the total number

of unique links in the network with one WSN, N2t is the total number of pixels in the

network with two WSNs, and M2t is the total number of unique links for the two WSNs.

The ratio in computational complexity between one WSN and z WSNs is

CompOne

Compz

=
N3 + 2N2M

N3
zt + 2zN2

zt Mzt

. (3.16)

3.5 Network Setup

While Section 3.4 discusses the ability to use up to z WSNs, the remainder of this

research focuses only on comparing the traditional RTI method with one WSN to a RTI

network with two WSNs. The experiments conducted in this research use a total of 70

TelosB TPR2400 motes covering an area no greater than 19 ft × 16 ft to create one or more

WSNs. Each mote is mounted approximately at a waist level height of 3 ft 4 in.

3.5.1 One Network.

For the traditional RTI method with one WSN, 70 transceivers are arranged in a

rectangular grid covering an area of 19 ft × 16 ft. The transceivers are separated 1 ft apart

from each other. Fig. 3.2 shows the layout of the transceivers for the traditional network.
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Figure 3.2: RTI network with one WSN.

3.5.2 Two Networks.

For a proper comparison between using one WSN and two WSNs, it is ideal to keep as

many variables constant as possible. Unfortunately, it is impossible to keep all parameters

the same and certain parameters have to be different. To create multiple WSNs that overlap

each other, there are tradeoffs that can be categorized into three main areas: total number

of transceivers, distance between each transceiver, and the total area covered in the WSNs.

Number of Transceivers. Changing the number of transceivers in a network affects

the number of unique links across the network, changing the amount of data available
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within the network. To keep the total number of transceivers the same while having two

WSNs that overlap each other, the distance between each transceiver have to increase or

the total network area of the network must decrease.

Transceiver Distance. Changing the distance between each transceiver will change

the distance between certain links, changing the weight on each pixel per link. To keep

the distance between each transceiver the same when creating two overlapping WSNs, the

total number of transceivers must increase or the total area of the network must decrease.

Total Network Area. Assuming the pixel size remains constant, changing the total

area of the network will change the number of pixels within the network. This will change

the size of the weight matrix and computational complexity. To keep the total area the same

between one WSN and two WSNs, the total number of transceivers must increase or the

distance between each transceiver must increase.

Due to limited time and resources, only experiments changing the distance between

each transceiver and experiments changing the total area of the network are conducted.

Fig. 3.3 shows the four different network configurations with two WSNs that are used in

this research. The network configurations in Fig. 3.3(a), Fig. 3.3(b), and Fig. 3.3(c) change

the total area of the network while maintaining the same distance between each transceiver

and same number of transceivers used as the traditional RTI network shown in Fig. 3.2. The

network configuration in Fig. 3.3(d) changes the distance between each transceiver while

maintaining the same total area of the network and same number of transceivers used as the

traditional RTI network shown in Fig. 3.2.

For the remainder of this research, the network configuration in Fig. 3.3(a) will be

referred to as the S mall network configuration, the network configuration in Fig. 3.3(b)

will be referred to as the Medium network configuration, the network configuration in

Fig. 3.3(c) will be referred to as the Large network configuration, and the network

configuration in Fig. 3.3(d) will be referred to as the All network configuration. The
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Figure 3.3: RTI network with two WSNs where wireless transceivers overlap each other.

The network configurations in (a), (b), and (c) change the total area of the RTI network.

Network configuration in (d) changes the distance between each transceiver.

network configuration in Fig. 3.2 will be referred to as the One network configuration.

Fig. 3.4 shows all the unique links for each network configuration.
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Figure 3.4: Unique links per network configuration.
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3.6 Target

Ultimately, the goal of RTI is to be able to detect, track, and localize targets within

a network area. RTI has been shown to be capable of detecting multiple targets [34].

However, detecting multiple targets within a RTI network adds to the complexity of

comparing each network configuration and is not the focus of this research. Therefore,

only one target is tested within the network at any given time.

3.6.1 Stationary.

Various stationary positions are tested to cover all possible areas of interest within

the total network area and provide an accurate comparison between each network

configuration. A target stands at nine different positions. Fig. 3.5 shows the nine positions

tested in this research. Due to symmetry of the network, only positions set in the lower left

quadrant are needed.

3.6.2 Moving.

In a real-world situation, targets are not always stationary, but are likely moving

around. RTI typically performs very well when a target is stationary since all transceivers

can transmit their RF signal without the obstruction(s) moving to a different location.

However, image quality quickly degrades when a target is moving since the transceivers

are unable to all simultaneously transmit their RF signal. Various speeds and patterns are

tested to characterize the effectiveness of using multiple WSNs for RTI. The true position

of a target at any given time is also known by having predefined speeds and patterns.

3.6.2.1 Speed.

Various movement speeds are tested to cover a range of scenarios where a target may

be moving fast or slow. This research uses three different speeds. For the remainder of this

research, a movement speed of 1 foot per second is referred to as a slow pace, a speed of

2 feet per second is referred to as a normal pace, and a speed of 3 feet per second is referred

to as a fast pace.
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Figure 3.5: Nine different stationary positions tested within the WSN.

3.6.2.2 Pattern.

The target uses three different controlled patterns to move around within the WSN.

This allows for proper post-analysis position estimation and comparison. Fig. 3.6, Fig. 3.7,

and Fig. 3.8 show the three patterns. In each pattern, the target starts at position (2,2) ft.

In the first pattern, the target walks in a rectangle, turning at (8,2) ft, (8,16) ft, (2,16) ft,

and stopping back at (2,2) ft. This pattern test the ability of the network to image a target

moving through the center of the network in the vertical Y direction. In the second pattern,

the target turns at (8,2) ft, (8,8) ft, and stops at (2,8) ft. Once at (2,8) ft, the target turns

around and retraces to (8,8) ft, (8,2) ft, and ending back at (2,2) ft. This pattern tests the

ability of the network to image a target moving through the center of the network in both

the horizontal X and vertical Y directions. The path slightly differs in the third pattern

depending on the speed of the target. For a slow pace, the target walks to (2,16) ft, then
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Figure 3.6: Pattern 1.

(3,16) ft, and ends at (3,2) ft. For a normal pace, the target walks to (2,16) ft, then (4,16) ft,

and ends at (4,2) ft. For a fast pace, the target walks to (2,16) ft, then (5,16) ft, and ends at

(5,2) ft. This pattern tests the ability of the network when a target walks mainly only along

the edge of a network.
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Figure 3.7: Pattern 2.
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Figure 3.8: Pattern 3.
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3.7 Simulations

Targets are simulated in a network using the uniformly attenuating cylindrical human

model mentioned in Section 2.9. A cylindrical human model of radius RT ∈ {1 ft, 1.15 ft,

1.3 ft} are used to simulate various sizes of a human for each experiment. Fig. 3.9 shows an

example of simulated attenuation images for different radii of the cylindrical human model

without any noise. AWGN is discussed in Section 2.5 and is the model used to add noise to

each simulated RSS with σn ∈ {2 dB, 4 dB, 6 dB} for each experiment. Fig. 3.10 shows an

example of attenuation images for the different σn. For simplicity and traceability, a WSN

with 35 transceivers is set to collect data at a frame rate of 2 frames per second. A WSN

with 70 transceivers is set to collect data at a frame rate of 1 frame per second. Table 3.2

shows the values used to create each simulation.

3.7.1 Stationary.

For stationary targets, 1000 realizations are generated for each position. In each

realization, 30 seconds of simulated noisy RSS data is generated using AWGN and stacked

together to create one averaged frame. Since there are half the number of transceivers in

the network configuration with two WSNs compared to the One network configuration,

there are approximately twice as many frames collected within 30 seconds in the network

configuration with two WSNs. Therefore, 60 frames of simulated data is generated for

each realization in the network configurations with two WSNs and 30 frames of simulated

data is generated for each realization in the One network configuration. This process is

repeated for each cylindrical human model radius and each σn of AWGN in Table 3.2 for

each network configuration.

Fig. 3.11 shows an example of a simulated stationary target with RT = 1 ft, where (a)

is the truth image, (b) is the simulated attenuation image without any noise added to the

RSS links, and (c) is the simulated attenuation image with AWGN added to the RSS links.

The red circle represents the location of the target.
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Figure 3.9: Example of attenuation images with different radii for the cylindrical human

model without any AWGN added to the RSS links. Each image has a stationary target at

position (8,2) ft.
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Figure 3.10: Example of attenuation images using AWGN with different σn. Each image

uses a cylindrical human model of RT = 1 ft and position at (8,2) ft.

3.7.2 Moving.

For moving targets, 100 realizations are generated for each pattern and each speed

per network configuration, resulting in 900 total simulated experiments for each network

configuration. The process for simulating RSS for a moving target is slightly more

complicated than for a stationary target. For a WSN with K transceivers, each transceiver

transmits in sequential order and a target may not be in the same position while each

transceiver is transmitting. The following steps are performed to simulate RSS for a moving

target.
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Table 3.2: Default values for simulations.

Variable Value

α 75

σn (dB) 2, 4, 6

RT (ft) 1, 1.15, 1.3
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Figure 3.11: Attenuation images from a simulated stationary target. The circle indicates

the position of the target at (2,2) ft. The radius of the cylindrical human model is RT = 1 ft

and (c) has AWGN of σn = 2 dB.

1. Determine how much distance is traveled between two data frames, which is

dependent on number of transceivers within the network and the pace of the target.

2. Divide the distance by the number of transceivers in the network and assign each

transceiver (in sequential order) to one of the divided distance.

3. Interpolate a true target position for each transceiver.

4. For each transceiver, generate a truth attenuation image, xT , for that position using

the uniformly attenuating cylindrical human model.

5. Compute y = Wx + n using the appropriate weight matrix, W, for the network

configuration, xT from step 4, and AWGN for n.

6. Extract RSS, ytr ⊂ y, for links only connected to that transceiver.
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Figure 3.12: Attenuation images from a simulated moving target at various paces. The

circle indicates the position of the target at the end of the data frame.

7. Repeat steps 4-6 for every transceiver with the respective true target position for that

transceiver.

8. Since each transceiver transmits a RF signal and receives a RSS from another

transceiver, there are two RSS for each unique link. Take the average RSS for each

unique link.

9. Create a vector of RSS, y, for that data frame.

10. Repeat steps 1-9 for every data frame per simulation.

This entire process is repeated for each simulated human radius and each σn of AWGN in

Table 3.2. Note: These simulations assume there are no lost RSS packets. Lost RSS packets

are common with real transceivers and future iterations of this process can incorporate

random lost RSS packets.

Fig. 3.12 shows an example of simulated attenuation images for a moving target where

(a) is the attenuation image of a target moving at a fast pace, (b) is the attenuation image of

a target moving at a normal pace, and (c) is the attenuation image of a target moving at a

slow pace. In each image, the position of the target at the end of the data frame is marked

by the red circle at (8,2) ft.
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3.8 Experimental

3.8.1 Equipment and Tools.

TelosB TPR2400. This research uses Memsic TelosB TPR2400 motes to create one

or more WSNs. The TelosB TPR2400 mote was designed by Crossbow Technology

Incorporated (Inc.) and is headquartered in Milpitas, California. The TelosB mote is

an Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 compliant platform

with an integrated onboard inverted-F antenna, CC2420 transceiver radio chip, data rate

of 250 Kilobits Per Second (kbps), and an 8 Megahertz (MHz) microcontroller with 10

Kilobyte (kB) of Random Access Memory (RAM) [50]. The RF transceiver power ranges

from -24 Decibel Milliwatts (dBm) to 0 dBm and has an indoor transmission range of 20

to 30 Meters (m). The mote is powered by two AA batteries or through the Universal

Serial Bus (USB). Data collection and programming the mote are accomplished through

the USB. More information regarding the inverted-F antenna can be found in [51] and more

information on the TelosB TPR2400 mote can be found in [50]. Fig. 3.13 shows a picture

of the TelosB TPR2400.

IEEE 802.15.4. IEEE 802.15.4 is a standard for low-rate Wireless Personal Area

Networks (WPANs). IEEE 802.15.4 based devices are focused on low cost and low power

consumption to increase energy efficiency [52], [53]. With an emphasis on keeping the

technology as simple as possible with low operating and maintenance costs, IEEE 802.15.4

standard devices are mainly used to create a cheap WSN. IEEE 802.15.4 operates between

2.4 Gigahertz (GHz) and 2.4835 GHz with 16 channels between 11 and 26. Each channel

has a carrier frequency in 0.005 GHz increments, starting at 2.405 GHz for Channel 11

and ending at 2.48 GHz for Channel 26. The carrier frequency, fc, for channel ch can be

represented in GHz as [16]

fc = 2.405 + 0.005 · (ch − 11), ch ∈ [11, 26]. (3.17)

49



Figure 3.13: TelosB TPR2400.

In order to collect data from two WSNs simultaneously without interfering with each other,

the transceivers in each WSN are programmed to operate on a different channel. Channel 26

is selected for motes with one WSN, while channels 15 and 20 are selected for motes with

two WSNs. These channels are selected because they have the least amount of interference

with other signals broadcasting in the test area.

TinyOS. The software used to program the TelosB TPR2400 is TinyOS, an open-

source operating system written in NesC [54]. TinyOS started as a research project at the

University of California, Berkeley.

Spin. The TelosB TPR2400 uses the Spin token protocol developed by the Sensing

and Processing Across Networks (SPAN) lab at the University of Utah [55]. Spin is an

open-source TinyOS program that allows only one mote to transmit at a time, preventing

multiple motes in the same network from transmitting a signal at the same time and making

the network more robust to lost packets. Spin is used to collect RSS data from each network.

RTI Link GUI. A RTI Link GUI was originally written in MATLABr by Dr.

Richard K. Martin (Associate Professor of Electrical Engineering at AFIT), Mr. Alex

50



Folkerts (Southwestern Ohio Council for Higher Education (SOCHE) Intern), and Mr.

Tyler Heinl (SOCHE Intern) to collect RSS data from a WSN [29]. A BaseStation mote

connected to a processing computer is used to collect RSS data from each transmitting

transceiver. The GUI parses the data and converts the values to signed integers. Each

unique link contains two RSS values for when each transceiver is transmitting a signal.

If the data packet is lost in either transceiver when it is transmitting, the GUI solely uses

the RSS data available from the other transceiver. If both transceivers fail to transmit a

data packet, then no data is available for that unique link. If both transceivers successfully

transmit RSS values, the two values are averaged. After every transceiver in the network

transmits its RF signal, the GUI outputs one data frame with a vector of RSS and the

corresponding time for that data frame. Experiments conducted with only one WSN

utilized the RTI Link GUI to collect data.

RTI Link GUI v2. For experiments involving two WSNs, a modified version of the

RTI Link GUI was developed to accommodate for collecting multiple vectors of RSS in

different WSNs simultaneously. Two BaseStation motes are required for collecting RSS

data from two WSNs, where each BaseStation mote is programmed to operate under the

same channel as the transceivers in its corresponding WSN.

Depending on the network configuration, the combined W matrix is generated as

outlined in (3.9). The corresponding Π matrix is also computed prior to real-time data

collection. To generate a combined estimated attenuation image, RSS data from both

WSNs must be collected. However, it is highly unlikely that both WSNs will collect one

frame of data exactly in the same amount of time. It is also undesirable to force one WSN

to wait for the other WSN to finish collecting one frame of data. Therefore, only the time

stamps from the first WSN is used while the second WSN continuously outputs its most

current vector of RSS data.
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Two instances of MATLABr are used to collect data from each WSN. In the second

WSN, the most current vector of RSS data, y2, is continuously outputted. Whenever the

first WSN finishes collecting one full vector of RSS data, the time stamp, t, and vector of

RSS data, y1, from the first WSN is combined with the most current vector of RSS data,

y2, from the second WSN. A third instance of MATLABr inputs the combined RSS data

and generates a combined estimated attenuation image.

Fig. 3.14 shows an example image of the updated GUI, where the top left figure

shows the estimated attenuation image for the first WSN, the top right figure shows the

estimated attenuation image for the second WSN, the bottom left figure shows the layout

of the network configurations, and the bottom right figure shows the combined estimated

attenuation image of both WSNs.

Mounting Motes. TelosB motes are attached to 1/2" Polyvinyl Chloride (PVC)

pipes at approximately a waist-level height of 3 ft 4 in using double-sided tape fastener.

While RSS information is collected through the BaseStation mote wirelessly, all motes are

powered through USB cables to ensure there is no loss of power during each experiment.

3.8.2 Experiment Design.

A total of 540 experiments are conducted. Three different subjects are tested in this

research and each subject conducts three separate moving trials. Each trial consists of the

subject moving around the RTI network with the three different patterns and three different

paces mentioned in Section 3.6.2, for a total of nine experiments per trial. Each subject

also conducts one stationary trial where the subject stands stationary in each of the nine

positions mentioned in Section 3.6.1. Network calibration is completed prior to each trial.

For each network configuration, 36 experiments are conducted per subject for a total of 108

experiments.

Experiments are conducted in a lab at AFIT. The lab represents somewhat a realistic

environment with numerous static objects that causes RF signals to scatter, reflect, and
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Figure 3.14: Updated RTI Link GUI for two WSNs.

diffract [14]. However, transceivers are set up with LOS and no static objects are placed

inside the network area to provide the best possible RSS. Fig. 3.15 shows an image of

the experimental network configuration for either the One network configuration or the All

network configuration since the locations of the transceivers are the same for both network

configurations. Fig. 3.16 shows an image of the Large network configuration in the lab.
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Fig. 3.17 shows an image of the Medium network configuration in the lab. Fig. 3.18 shows

an image of the S mall network configuration in the lab.

For stationary experiments, data is collected for approximately 30 seconds while the

target remains stationary at each predetermined position. Table 3.3 shows a summary of

the experiments conducted for a stationary target. For experiments where the target is

moving around within the network, the subject stands at the initial position of (2,2) ft

for 3 seconds before proceeding to allow enough time for the RTI Link GUI to initialize.

Depending on the pattern and pace, each experiment lasts between 15 seconds and 45

seconds. A metronome is used to ensure the subject moves at the specified pace between

each experiment. Table 3.4 shows a summary of the experiments conducted for a moving

target.

3.8.3 Human Subjects.

This research involved the use of human subjects. Required training was completed

by the principal investigator and associate investigators. AFIT RTI protocol was approved

by the Air Force Research Laboratory (AFRL) Institutional Review Board (IRB). All

test subjects were briefed, signed an Informed Consent Document (ICD), and voluntarily

agreed to participate in the experiments prior to entering an active RTI network.
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(a) Corner view from (19,0) ft

(b) View from (0,8) ft

Figure 3.15: Experimental All and One network configurations lab setup.

55



Figure 3.16: Experimental Large network configuration lab setup.

Figure 3.17: Experimental Medium network configuration lab setup.
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Figure 3.18: Experimental S mall network configuration lab setup.

Table 3.3: Stationary experiments.

Total # of

Experi-

ments

# of Trials

Per Target
Position (ft)

15 1 (2,2)

15 1 (2,5)

15 1 (2,8)

15 1 (5,2)

15 1 (5,5)

15 1 (5,8)

15 1 (8,2)

15 1 (8,5)

15 1 (8,8)
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Table 3.4: Moving experiments.

Total # of

Experi-

ments

# of Trials

Per Target
Pattern Pace

45 3 1 Fast

45 3 1 Normal

45 3 1 Slow

45 3 2 Fast

45 3 2 Normal

45 3 2 Slow

45 3 3 Fast

45 3 3 Normal

45 3 3 Slow
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IV. Results and Discussion

T
his chapter presents the results from the simulations and experiments conducted

as described in Chapter 3. Stationary and moving targets are tested within each

network configuration. Average frame rate, computational complexity, and image quality

are used to analyze and characterize each network configuration for both simulations and

experimental tests. Position estimates and SNR values are presented to quantify image

quality of the attenuation images. Additional comparisons are made between different

speeds and different patterns of the target within the WSN(s).

4.1 Frame Rate

Table 4.1 shows the average frame rate of all the experiments conducted for each

network configuration. Using a total of 70 transceivers for any network configuration, the

network configurations with two WSNs show an average frame rate of approximately 2.22

times faster compared to the network configuration with one WSN.

4.2 Computational Complexity

For each network configuration, the weight matrix and corresponding Π matrix are

computed in MATLABr. The Π matrix is then multiplied with a simulated vector of

RSS data to create an estimated attenuation image. Using the tic and toc commands

in MATLABr, 1000 realizations are generated, timed, and averaged for each network

configuration. Table 4.2 shows the average computational time for each network.

Table 4.3 shows the ratio between computational complexity of the One network

configuration to each of the other network configurations with two WSNs. The theoretical

ratios are computed using (3.15) and experimental ratios are computed using the values in

Table 4.2.
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Table 4.1: Frame Rate for All Experiments.

Network

Config

Avg Frame

Rate

(frames/sec)

Standard

Deviation

Min Frame

Rate

(frames/sec)

Max Frame

Rate

(frames/sec)

S mall 2.23 0.26 0.71 4.02

Medium 2.22 0.28 0.77 4.00

Large 2.19 0.36 0.36 5.81

All 2.25 0.27 0.72 4.00

One 0.86 0.088 0.42 2.79

Table 4.2: Computational complexity results.

Network

Config

Avg Comp

Time Per

Frame (s)

Standard

Deviation

(s)

# Pixels Per

Network

Total #

Pixels

Total #

Unique

Links

S mall 2.72 0.036 627 1056 1190

Medium 2.70 0.035 627 924 1190

Large 2.66 0.034 627 660 1190

All 4.52 0.046 1287 1287 1190

One 8.13 0.096 1287 1287 2415

Table 4.3: Ratio of computational complexity.

Ratio with Network Config Theoretical Experimental

S mall 1.56 2.99

Medium 2.08 3.02

Large 4.29 3.05

All 1.01 1.80
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4.3 Image Quality

PSNR, SNR, and RMSE of all estimated attenuation images for each network

configuration are discussed in this section. Characterization using these metrics are broken

up into 3 categories: stationary, moving by pace, and moving by pattern. For any figures

displaying information on RMSE, each plot represents the average RMSE and the error

bars represent one standard deviation from the average value. Since PSNR and SNR are

presented in dB, each plot represents the median PSNR and median SNR, respectively, and

the error bars represent where 68% of the data is contained. This represents roughly one

standard deviation, assuming a Gaussian distribution.

4.3.1 Stationary Target.

This section presents the results for all nine stationary positions mentioned in

Section 3.6.1 for each network configuration. Fig. 4.1 shows an example of truth,

simulated, and experimental attenuation images of a stationary target at the position of

(2,2) ft in the One network configuration. Different σn are simulated for a target with

radius RT = 1.3 ft. Note in Fig. 4.1(f) that the noise experienced with the transceivers in

the lab closely resembles the simulated data with σn = 4 dB or 6 dB.

4.3.1.1 Simulations.

This section presents the results from simulating a RTI network in MATLABr with a

stationary target at the nine different predefined positions. Even though three different RT

radii and three different σn values are simulated as mentioned in Section 3.7, only results

with RT ∈ {1 ft, 1.3 ft} and σn ∈ {2 dB, 6 dB} are presented since they represent the low

and high values of each variable.

Fig. 4.2 shows the attenuation images for one frame of data of a simulated stationary

target at the position of (8,8) ft for each network configuration. The simulated target has

RT = 1 ft and σn = 2 dB. Fig. 4.3 presents the same target size of RT = 1 ft and position

at (8,8) ft, but σn = 6 dB. Fig. 4.4 shows the attenuation images of a simulated stationary
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target similar to Fig. 4.3, except all 30 seconds of RSS data per simulated experiment are

stacked together and averaged prior to computing an estimated attenuation image.

As can be seen between Fig. 4.2 and Fig. 4.3, the amount of noise within the RTI

network can greatly affect the ability of the network to accurately determine the true

position of the target. More specifically, attenuation images in networks with fewer

communication links traversing through the area where the target is located, such as the

S mall and Medium network configurations, may be unable to consistently discern between

a target and noise. However, Fig. 4.4 shows that noise can greatly be reduced in the

estimated attenuation image if it is possible to stack multiple frames of RSS data together.
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Figure 4.1: Example comparison of attenuation images for a stationary target at (2,2) ft in

the One network configuration. The circle marks the true position of the target. Attenuation

image in (a) represents the truth attenuation image with RT = 1.3 ft. Attenuation images in

(b), (c), (d), and (e) are simulated images with RT = 1.3 ft and different σn. Attenuation

image in (f) is from experimental data.

63



0 5 10 15
0

5

10

15

Y
 (

ft)

X (ft)
(a) Small

0 5 10 15
0

5

10

15

Y
 (

ft)

X (ft)
(b) Medium

0 5 10 15
0

5

10

15

Y
 (

ft)

X (ft)
(c) Large

0 5 10 15
0

5

10

15

Y
 (

ft)

X (ft)
(d) All

0 5 10 15
0

5

10

15

Y
 (

ft)

X (ft)
(e) One

Figure 4.2: Attenuation images from one frame of data of a simulated stationary target at

the position of (8,8) ft. RT = 1 ft and σn = 2 dB. The circle marks the true position of the

target.
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Figure 4.3: Attenuation images from one frame of data of a simulated stationary target at

the position of (8,8) ft. RT = 1 ft and σn = 6 dB. The circle marks the true position of the

target.
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Figure 4.4: Attenuation images from a stacked data of a simulated stationary target at the

position of (8,8) ft. RT = 1 ft and σn = 6 dB. The circle marks the true position of the target.
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Figs. 4.5–4.8 show the median PSNR in (a) and median SNR in (b) of a simulated

stationary target for all realizations of all nine stationary positions for each network

configuration. Figs. 4.9–4.12 show the average RMSE of a simulated stationary target

for all realizations of all nine stationary positions for each network configuration. Position

estimation using the maximum intensity value within the attenuation image is shown in (a),

position estimation using 1-D projection is shown in (b), and position estimation using the

Gaussian kernel to smooth the attenuation image prior to finding the maximum intensity

value is shown in (c).

Looking at Figs. 4.5–4.8, the median PSNR and SNR increases as there are more

overlap between two WSNs. In all network configurations with two WSNs, the median

PSNR and SNR of the combined image is always higher than each individual network

image. The One network configuration has the highest median PSNR and SNR, which is

expected since the target is stationary and there are approximately twice as many unique

links within the One network configuration over the other network configurations. Note

that when RT = 1 ft, PSNR and SNR decreases as σn increases. However, when RT = 1.3

ft, there is little change in PSNR and SNR per network configuration as σn changes.

Looking at Figs. 4.9–4.12, the average RMSE decreases as there is more overlap

between two WSNs. Average RMSE using 1-D projection estimation in the One network

configuration is slightly greater than the All network configuration when σn = 6 dB.

Aside from this, position estimation is perfect for the All and One network configurations,

regardless of RT , σn, and position estimation technique. The Gaussian estimation technique

provides similar average RMSE as the maximum intensity value estimation technique. The

1-D projection estimation technique has the highest average RMSE compared to the other

estimation techniques. Also, aside from the S mall network configuration, the RMSE for

the combined image is always lower than each individual network.
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Figure 4.5: Median PSNR and SNR of simulated stationary target for each network

configuration. RT = 1 ft and σn = 2 dB.
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Figure 4.6: Median PSNR and SNR of simulated stationary target for each network

configuration. RT = 1.3 ft and σn = 2 dB.
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Figure 4.7: Median PSNR and SNR of simulated stationary target for each network

configuration. RT = 1 ft and σn = 6 dB.
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Figure 4.8: Median PSNR and SNR of simulated stationary target for each network

configuration. RT = 1.3 ft and σn = 6 dB.
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Figure 4.9: Average RMSE of simulated stationary target for each network configuration

for each position estimation technique. RT = 1 ft and σn = 2 dB.
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Figure 4.10: Average RMSE of simulated stationary target for each network configuration

for each position estimation technique. RT = 1.3 ft and σn = 2 dB.
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Figure 4.11: Average RMSE of simulated stationary target for each network configuration

for each position estimation technique. RT = 1 ft and σn = 6 dB.
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Figure 4.12: Average RMSE of simulated stationary target for each network configuration

for each position estimation technique. RT = 1.3 ft and σn = 6 dB.
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4.3.1.2 Experimental.

This section present results from experimental stationary targets. Fig. 4.13 and

Fig. 4.14 show examples of attenuation images from a stacked data of RSS values for a

stationary target. In Fig. 4.13, the target stands by the edge of the network at (2,5) ft. In

Fig. 4.14, the target stands close to the center of the area at (8,8) ft.

Fig. 4.15 shows the median PSNR in (a) and median SNR in (b) of all experimental

stationary target data for all nine stationary positions for each network configuration. In

all network configurations with two WSNs, the median PSNR and SNR of the combined

image is always higher than each individual network image. The median PSNR follows the

same trend as simulated data where the PSNR increases as there is more overlap between

two WSNs. SNR also generally follows the same trend, except the difference in median

SNR between each network configuration is less than 1 dB. Also, the Large network

configuration has a slightly higher SNR than the All and One network configurations.

Fig. 4.16 shows the average RMSE of all experimental stationary target data for all

positions for each network configuration. Position estimation using the maximum intensity

value within the attenuation image is shown in (a), position estimation using 1-D projection

is shown in (b), and position estimation using the Gaussian kernel to smooth the attenuation

image prior to finding the maximum intensity value is shown in (c). Except for the 1-D

projection estimation technique, the average RMSE decreases as there is more overlap

between the two WSNs. The One network configuration has the lowest average RMSE.

The RMSE using the 1-D projection estimation typically has the highest average RMSE

in comparison to the other two estimation techniques. The Gaussian estimation technique

provides a slightly better, if not the same, average RMSE as the maximum intensity value

estimation. Finally, the average RMSE for the combined network image is always lower

than that of each individual network.
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Figure 4.13: Attenuation images from a stacked data of a stationary target at the position

of (2,5) ft. The circle marks the true position of the target.
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Figure 4.14: Attenuation images from a stacked data of a stationary target at the position

of (8,8) ft. The circle marks the true position of the target.
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Figure 4.15: Median PSNR and SNR of all experimental stationary target data.
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Figure 4.16: Average RMSE of all experimental stationary target data for each position

estimation technique.
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Figure 4.17: Example of (a) a noiseless attenuation image of a simulated moving target

with RT = 1.3 ft, (b) estimated attenuation image from simulated RSS data with RT = 1.3

ft and σn = 2 dB, and (c) estimated attenuation image from experimental data for a target

moving at a fast pace in the Medium network configuration. The circle marks the true

position of the target.

4.3.2 Moving by Pace.

This section presents the results of moving target data for each of the three different

paces mentioned in Section 3.6.2.1. Fig. 4.17 shows an example of a noiseless simulated

attenuation image of a moving target applying the process described in Section 3.7. An

estimated attenuation image from simulated data and an estimated attenuation image from

experimental data of a target moving at a fast pace is shown as well in Fig. 4.17.

4.3.2.1 Simulations.

This section presents the results from simulating a RTI network in MATLABr with

a moving target. Fig. 4.18 shows an example of the estimated attenuation images of a

simulated moving target at a fast pace for each network configuration. The position of the

target is at (8,5) ft for this data frame. The simulated target has a radius of RT = 1 ft and the

circle marks the true position of the target. Note that instead of a dark circular spot where

the target is located as in simulated stationary results, there is a dark oval-like shape. This
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is a result of the target not being at the same position while each transceiver is transmitting

its RF signal.

Figs. 4.19–4.22 show the median PSNR of a simulated moving target for all 900

realizations with respect to pace. Similar to stationary results, the median PSNR of the

combined network image is always higher or the same than each individual network. Also,

the median PSNR increases as there is more overlap between two WSNs. The median

PSNR also increases as the pace of the target decreases. The One network configuration

provides the best PSNR when the target is moving at a slow pace. However, PSNR in the All

network configuration is either similar or higher than the One network configuration when

the target is moving at the normal or fast pace. Finally, PSNR decreases as σn increases.

Figs. 4.23–4.26 show the median SNR of a simulated moving target for all 900

realizations with respect to pace. The median SNR when σn = 2 dB follows the same trend

as stationary results and increases as there is more overlap between two WSNs. However,

the median SNR is similar to each other regardless of the network configuration when σn =

6 dB. With respect to pace, there is no discernible trend in SNR for simulated moving data

between network configurations for different RT and σn.

Figs. 4.27–4.30 show the average RMSE of a simulated moving target for all 900

realizations with respect to pace using the maximum intensity value estimation technique.

Figs. 4.31–4.34 show the average RMSE of a simulated moving target for all 900

realizations with respect to pace using the 1-D projection estimation technique. Figs. 4.35–

4.38 show the average RMSE of a simulated moving target for all 900 realizations with

respect to pace using the Gaussian kernel to smooth the attenuation image prior to finding

the maximum intensity value. The average RMSE remains relatively low when σn = 2

dB. Regardless of the estimation technique, average RMSE is under 1.5 ft when σn = 2

dB, and trends downward as there is more overlap between two WSNs. Position estimation

becomes more accurate as the pace of the target is slower. When σn = 2 dB, the All network
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configuration generally has the best position estimates and lowest average RMSE out of

all the network configurations, followed by a mix between the Large and One network

configurations. Average RMSE is higher at σn = 6 dB thanσn = 2 dB. However, the change

in RMSE is not as profound when RT = 1.3 ft. For σn = 6 dB, the maximum intensity value

and Gaussian estimation technique provides an average RMSE of up to 3 ft when RT = 1

ft and under 1.5 ft when RT = 1.3 ft. The 1-D projection estimation technique provides

the highest average RMSE out of the three estimation techniques. When RT = 1 ft and

σn = 6 dB, the average RMSE is over 4 ft using the 1-D projection estimation technique.

While also higher, the maximum intensity value estimation technique is still able to provide

estimates with an average RMSE of under 3 ft and Gaussian estimation technique with an

average RMSE of under 2 ft when RT = 1 ft and σn = 6 dB.
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Figure 4.18: Attenuation images of a simulated moving target at a fast pace. Current

position of target is (8,5) ft for this frame of data. RT = 1 ft and σn = 2 dB. The circle

marks the true position of the target.
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Figure 4.19: Median PSNR of simulated moving target by pace. RT = 1 ft and σn = 2 dB.
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Figure 4.20: Median PSNR of simulated moving target by pace. RT = 1.3 ft and σn = 2 dB.
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Figure 4.21: Median PSNR of simulated moving target by pace. RT = 1 ft and σn = 6 dB.
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Figure 4.22: Median PSNR of simulated moving target by pace. RT = 1.3 ft and σn = 6 dB.
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Figure 4.23: Median SNR of simulated moving target by pace. RT = 1 ft and σn = 2 dB.
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Figure 4.24: Median SNR of simulated moving target by pace. RT = 1.3 ft and σn = 2 dB.
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Figure 4.25: Median SNR of simulated moving target by pace. RT = 1 ft and σn = 6 dB.
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Figure 4.26: Median SNR of simulated moving target by pace. RT = 1.3 ft and σn = 6 dB.
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Figure 4.27: Average RMSE of simulated moving target for each pace using maximum

intensity value estimation technique. RT = 1 ft and σn = 2 dB.
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Figure 4.28: Average RMSE of simulated moving target for each pace using maximum

intensity value estimation technique. RT = 1.3 ft and σn = 2 dB.
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Figure 4.29: Average RMSE of simulated moving target for each pace using maximum

intensity value estimation technique. RT = 1 ft and σn = 6 dB.
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Figure 4.30: Average RMSE of simulated moving target for each pace using maximum

intensity value estimation technique. RT = 1.3 ft and σn = 6 dB.
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Figure 4.31: Average RMSE of simulated moving target for each pace using 1-D projection

estimation technique. RT = 1 ft and σn = 2 dB.
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Figure 4.32: Average RMSE of simulated moving target for each pace using 1-D projection

estimation technique. RT = 1.3 ft and σn = 2 dB.
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Figure 4.33: Average RMSE of simulated moving target for each pace using 1-D projection

estimation technique. RT = 1 ft and σn = 6 dB.
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Figure 4.34: Average RMSE of simulated moving target for each pace using 1-D projection

estimation technique. RT = 1.3 ft and σn = 6 dB.
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Figure 4.35: Average RMSE of simulated moving target for each pace using Gaussian

kernel estimation technique. RT = 1 ft and σn = 2 dB.
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Figure 4.36: Average RMSE of simulated moving target for each pace using Gaussian

kernel estimation technique. RT = 1.3 ft and σn = 2 dB.
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Figure 4.37: Average RMSE of simulated moving target for each pace using Gaussian

kernel estimation technique. RT = 1 ft and σn = 6 dB.
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Figure 4.38: Average RMSE of simulated moving target for each pace using Gaussian

kernel estimation technique. RT = 1.3 ft and σn = 6 dB.
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4.3.2.2 Experimental.

Fig. 4.39 shows the attenuation images of a moving target at a fast pace for each

network configuration. The position of the target is at (2,8) ft for this data frame while

the target is heading from (2,14) ft to (2,2) ft. Note that the dark oval-like shape in

each attenuation image is slightly behind the true position of the target. Fig. 4.40 shows

an example of the estimated (x̂, ŷ) position for each pace using the Gaussian estimation

technique. Note in Fig. 4.40 that as the pace of a target increases, the position estimate

error also increases.

Fig. 4.41 shows the median PSNR of all experimental moving target data with respect

to pace. Fig. 4.42 shows the median SNR of all experimental moving target data with

respect to pace. Similar to simulated results, the median PSNR of the combined network

image is always better than each individual network. The median PSNR is also higher as

the pace of the target is slower. The All network configuration provides the best median

PSNR values in comparison to the other network configurations. Looking at Fig. 4.42, the

median SNR increases as the pace of the target decreases. However, the median SNR is

fairly similar between each network configuration with a difference of less than 0.5 dB.

The One network configuration has the lowest median SNR values, regardless of the pace.

Fig. 4.43 shows the average RMSE using the maximum intensity value estimation

technique, Fig. 4.44 shows the average RMSE using the 1-D projection estimation

technique, and Fig. 4.45 shows the average RMSE using the Gaussian kernel estimation

technique for experimental moving target data with respect to pace. For Figs. 4.43–4.45,

(a) is the average RMSE of all the experimental moving data for a fast pace, (b) is the

average RMSE of all the experimental moving data for a normal pace, and (c) is the average

RMSE of all the experimental moving data for a slow pace. For the Medium, Large, and

All network configurations, the average RMSE for the combined network is always lower

than each individual network. Position estimation accuracy increases as the pace of the
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target is slower. With the maximum intensity value and Gaussian estimation techniques, the

All network configuration has the lowest average RMSE, followed by the Large network

configuration. In the 1-D projection estimation technique, the Large, All, and One network

configurations yield similar results. The 1-D projection estimation technique provides the

highest average RMSE between the three estimation techniques. The Gaussian estimation

technique provides similar average RMSE as the maximum intensity value technique.
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Figure 4.39: Attenuation images of an experimental moving target at a fast pace. Current

position for target is (2,8) ft for this frame of data. The circle marks the true position of the

target.
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Figure 4.40: Example of a comparison between the true position of the target and

experimental estimated position of the target in the Large network configuration.

93



S M L All One
0

5

10

15

20

Network Config
(a) Fast Pace

PS
N

R
 (

dB
)

S M L All One
0

5

10

15

20

PS
N

R
 (

dB
)

Network Config
(b) Normal Pace

S M L All One
0

5

10

15

20

Network Config
(c) Slow Pace

PS
N

R
 (

dB
)

 

 

Net 1
Net 2
Comb Net
One Net

Figure 4.41: Median PSNR of experimental moving target for each network configuration.
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Figure 4.42: Median SNR of experimental moving target for each network configuration.
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Figure 4.43: Average RMSE of experimental moving target for each network configuration

using maximum intensity value estimation technique.
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Figure 4.44: Average RMSE of experimental moving target for each network configuration

using 1-D projection estimation technique.
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Figure 4.45: Average RMSE of experimental moving target for each network configuration

using Gaussian kernel estimation technique.
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4.3.3 Moving by Pattern.

This section presents the results of moving target data for each of the three different

patterns mentioned in Section 3.6.2.2.

4.3.3.1 Simulations.

Figs. 4.46–4.49 show the median PSNR of a simulated moving target for all 900

realizations with respect to pattern. Similar to stationary results, the median PSNR of

the combined network image is always higher than or the same as each individual network.

The median PSNR decreases as σn increases. However, no one pattern consistently shows

a significantly better median PSNR than the other patterns for each RT and σn.

Figs. 4.50–4.53 show the median SNR of a simulated moving target for all 900

realizations with respect to pattern. The median SNR is also always better in a combined

network than each individual network. When σn = 2 dB, median SNR increases as there

is more overlap between two WSNs. Also, the All network configuration has the highest

median SNR when σn = 2 dB. When σn = 6 dB, the Large network configuration has

the highest median SNR and the All network configuration has one of the lowest median

SNR. However, similar to Figs. 4.46–4.49, there is no one pattern that consistently shows

a significantly better median SNR than the other patterns for each RT and σn.

Figs. 4.54–4.57 show the average RMSE of a simulated moving target for all

900 realizations with respect to pattern using the maximum intensity value estimation

technique. Figs. 4.58–4.61 show the average RMSE of a simulated moving target for

all 900 realizations with respect to pattern using the 1-D projection estimation technique.

Figs. 4.62–4.65 show the average RMSE of a simulated moving target for all 900

realizations with respect to pattern using the Gaussian kernel to smooth the attenuation

image prior to finding the maximum intensity value. For the Medium, Large, and All

network configurations, the average RMSE for the combined network is always lower than

each individual network. The 1-D projection estimation technique provides the highest
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average RMSE in comparison to the other estimation techniques. The Gaussian estimation

technique provides similar or slightly lower average RMSE as the maximum intensity

value estimation technique. When σn = 2 dB, the All network configuration provides the

best position estimates with the lowest average RMSE. The Large and Medium network

configurations provide the next best position estimations, followed by the One network

configuration. When σn = 6 dB and RT = 1 ft, the Large or One network configuration

provides the lowest average RMSE. When σn = 6 dB and RT = 1.3 ft, the All network

configuration generally provides the lowest average RMSE, followed by a mix between the

One and Large network configurations. Pattern 3 generally has a consistent average RMSE

for each network configuration, but the average RMSE for the other two patterns is not

significantly different.
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Figure 4.46: Median PSNR of simulated moving target by pattern. RT = 1 ft and σn = 2

dB.

S M L All One
0

5

10

15

20

25

30

Network Config
(a) Pattern 1

P
S

N
R

 (
dB

)

S M L All One
0

5

10

15

20

25

30

Network Config
(b) Pattern 2

P
S

N
R

 (
dB

)

S M L All One
0

5

10

15

20

25

30

Network Config
(c) Pattern 3

P
S

N
R

 (
dB

)

 

 

Net 1
Net 2
Comb Net
One Net

Figure 4.47: Median PSNR of simulated moving target by pattern. RT = 1.3 ft and σn = 2

dB.
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Figure 4.48: Median PSNR of simulated moving target by pattern. RT = 1 ft and σn = 6

dB.

S M L All One
0

5

10

15

20

25

30

Network Config
(a) Pattern 1

P
S

N
R

 (
dB

)

S M L All One
0

5

10

15

20

25

30

Network Config
(b) Pattern 2

P
S

N
R

 (
dB

)

S M L All One
0

5

10

15

20

25

30

Network Config
(c) Pattern 3

P
S

N
R

 (
dB

)

 

 

Net 1
Net 2
Comb Net
One Net

Figure 4.49: Median PSNR of simulated moving target by pattern. RT = 1.3 ft and σn = 6

dB.
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Figure 4.50: Median SNR of simulated moving target by pattern. RT = 1 ft and σn = 2 dB.
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Figure 4.51: Median SNR of simulated moving target by pattern. RT = 1.3 ft and σn = 2

dB.
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Figure 4.52: Median SNR of simulated moving target by pattern. RT = 1 ft and σn = 6 dB.
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Figure 4.53: Median SNR of simulated moving target by pattern. RT = 1.3 ft and σn = 6

dB.
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Figure 4.54: Average RMSE of simulated moving target for each pattern using maximum

intensity value estimation technique. RT = 1 ft and σn = 2 dB.

S M L All One
0

1

2

3

4

5

6

7

Network Config
(a) Pattern 1

R
M

S
E

 (
ft)

S M L All One
0

1

2

3

4

5

6

7

Network Config
(b) Pattern 2

R
M

S
E

 (
ft)

S M L All One
0

1

2

3

4

5

6

7

Network Config
(c) Pattern 3

R
M

S
E

 (
ft)

 

 
Net 1
Net 2
Comb Net
One Net

Figure 4.55: Average RMSE of simulated moving target for each pattern using maximum

intensity value estimation technique. RT = 1.3 ft and σn = 2 dB.
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Figure 4.56: Average RMSE of simulated moving target for each pattern using maximum

intensity value estimation technique. RT = 1 ft and σn = 6 dB.
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Figure 4.57: Average RMSE of simulated moving target for each pattern using maximum

intensity value estimation technique. RT = 1.3 ft and σn = 6 dB.
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Figure 4.58: Average RMSE of simulated moving target for each pattern using 1-D

projection estimation technique. RT = 1 ft and σn = 2 dB.
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Figure 4.59: Average RMSE of simulated moving target for each pattern using 1-D

projection estimation technique. RT = 1.3 ft and σn = 2 dB.
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Figure 4.60: Average RMSE of simulated moving target for each pattern using 1-D

projection estimation technique. RT = 1 ft and σn = 6 dB.
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Figure 4.61: Average RMSE of simulated moving target for each pattern using 1-D

projection estimation technique. RT = 1.3 ft and σn = 6 dB.
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Figure 4.62: Average RMSE of simulated moving target for each pattern using Gaussian

kernel estimation technique. RT = 1 ft and σn = 2 dB.

S M L All One
0

1

2

3

4

5

6

7

Network Config
(a) Pattern 1

R
M

S
E

 (
ft)

S M L All One
0

1

2

3

4

5

6

7

Network Config
(b) Pattern 2

R
M

S
E

 (
ft)

S M L All One
0

1

2

3

4

5

6

7

Network Config
(c) Pattern 3

R
M

S
E

 (
ft)

 

 
Net 1
Net 2
Comb Net
One Net

Figure 4.63: Average RMSE of simulated moving target for each pattern using Gaussian

kernel estimation technique. RT = 1.3 ft and σn = 2 dB.
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Figure 4.64: Average RMSE of simulated moving target for each pattern using Gaussian

kernel estimation technique. RT = 1 ft and σn = 6 dB.

S M L All One
0

1

2

3

4

5

6

7

Network Config
(a) Pattern 1

R
M

S
E

 (
ft)

S M L All One
0

1

2

3

4

5

6

7

Network Config
(b) Pattern 2

R
M

S
E

 (
ft)

S M L All One
0

1

2

3

4

5

6

7

Network Config
(c) Pattern 3

R
M

S
E

 (
ft)

 

 
Net 1
Net 2
Comb Net
One Net

Figure 4.65: Average RMSE of simulated moving target for each pattern using Gaussian

kernel estimation technique. RT = 1.3 ft and σn = 6 dB.

108



4.3.3.2 Experimental.

Fig. 4.66 shows the median PSNR of all experimental moving target data with respect

to pattern. Fig. 4.67 shows the median SNR of all experimental moving target data with

respect to pattern. For network configurations with two WSNs, the median PSNR is

always higher in the combined network than each individual network. The All network

configuration has the highest median PSNR, followed by a mix between the One and Large

network configurations. However, the median PSNR is similar between each pattern for

each network configuration. The median SNR is also fairly similar between each pattern

and are all within 1 dB of each other, regardless of network configuration.

Fig. 4.68 shows the average RMSE using the maximum intensity value estimation

technique, Fig. 4.69 shows the average RMSE using the 1-D projection estimation

technique, and Fig. 4.70 shows the average RMSE using the Gaussian kernel estimation

technique for experimental moving target data with respect to pattern. For Figs. 4.68–4.70,

(a) is the average RMSE of all the experiments for Pattern 1, (b) is the average RMSE of

all the experiments for Pattern 2, and (c) is the average RMSE of all the experiments for

Pattern 3. The 1-D projection estimation technique provides the highest average RMSE out

of the three position estimation techniques. The Gaussian estimation technique provides

similar or slightly lower average RMSE results as the maximum intensity value estimation

technique. Pattern 3 maintains a consistent average RMSE regardless of the network

configuration.
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Figure 4.66: Median PSNR of experimental moving target for each network configuration.
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Figure 4.67: Median SNR of experimental moving target for each network configuration.
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Figure 4.68: Average RMSE of experimental moving target for each network configuration

using maximum intensity value estimation technique.

S M L All One
0

1

2

3

4

5

6

7

Network Config
(a) Pattern 1

R
M

SE
 (

ft
)

S M L All One
0

1

2

3

4

5

6

7

R
M

SE
 (

ft
)

Network Config
(b) Pattern 2

S M L All One
0

1

2

3

4

5

6

7

Network Config
(c) Pattern 3

R
M

SE
 (

ft
)

 

 
Net 1
Net 2
Comb Net
One Net

Figure 4.69: Average RMSE of experimental moving target for each network configuration

using 1-D projection estimation technique.
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Figure 4.70: Average RMSE of experimental moving target for each network configuration

using Gaussian kernel estimation technique.

112



4.3.4 Summary.

This section summarizes the image quality results for each network configuration.

4.3.4.1 PSNR/SNR.

PSNR generally provides results that are consistent with what is expected. The median

PSNR generally increases as there is more overlap between two WSNs. This is expected

since the greater the overlap, the more communication links there are crossing through the

pixels of which the target is traversing through. The median PSNR also increases as the

target moves slower. The results from SNR, however, are inconclusive. In simulations

with σn = 2 dB, the median SNR increases as there is more overlap between two WSNs.

However, the median SNR for simulations with σn = 6 dB and experimental results are

inconsistent and fluctuates between each network configuration. The shadowing effects

of a target depend on the size, shape, clothing, etc., of a target and using one standard

truth attenuation image is probably not a good method to accurately compare estimated

attenuation images with, although further research is required to say anything definitive.

4.3.4.2 Position Estimation Techniques.

Fig. 4.71 shows an example of position estimations for experiments where the target

is walking at a slow pace for Pattern 2. Note that position estimates using the 1-D

projection estimation technique in (b) display greater dispersion than the position estimates

for maximum intensity value in (a) and Gaussian kernel in (c). Consistent with the results

in all simulations and experiments, the 1-D projection estimation technique provides the

highest error in comparison to the other position estimation techniques. The Gaussian

kernel estimation technique generally provides the best estimation technique out of the

three position estimation techniques. This is expected because the Gaussian kernel helps

suppress the noise in an image, lowering random spikes in intensity within the attenuation

image that might be mistaken as an obstruction. Fig. 4.72 shows a comparison between a
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Figure 4.71: Example of estimated positions for experimental moving target data with

target walking in a slow pace for Pattern 2.

noisy attenuation image before and after the image has been filtered by the Gaussian kernel.

Note that noisy spikes around the image have been smoothed and suppressed.

4.3.4.3 Network Configuration.

For any network configuration with two WSNs, the combined estimated attenuation

image is almost always better than the attenuation image from each individual network.

The only circumstances where one individual network performs better than the combined

network is when the target rarely traverses through the area covered within the second
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Figure 4.72: Attenuation images of an experimental moving target currently at (5,2) ft

where (a) is the original attenuation image and (b) is the attenuation image after it has been

filtered by the Gaussian kernel. The circle marks the true position of the target.

individual network. In this situation, the combined network provides a worse attenuation

image because it is simply adding noise from the unused second individual network.

In simulations, noise does not have much of an effect on the outcome of the results

when RT = 1.3 ft. However, when RT = 1 ft, noise has a much greater impact on the quality

of the attenuation images. This is also expected because a smaller target will have less

shadowing effects within the network and produce a smaller attenuation.

Stationary. For a stationary target, the One network configuration has the best image

quality in terms of PSNR and RMSE, although the All and Large network configurations

also yield very similar results. Since the target is not moving, this is expected since the

One network configuration has the most number of links and, therefore, data to generate

an attenuation image that is better than a network with less links. The Large, All, and One

network configurations have an average RMSE of under 1 ft using the Gaussian estimation

technique. The Medium network configuration has approximately a median PSNR of 2 dB

lower than the One network configuration, but is also able to provide position estimates

with an average RMSE of 1 ft.
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Moving. For a moving target with respect to pattern or pace, the All network config-

uration generally provides the best image quality in terms of PSNR and RMSE, followed

by a mix between the Large network configuration and One network configuration. This is

due to the layout of the transceivers within the network configuration. For the All network

configuration, the transceivers surround the entire network area, allowing for a relatively

even distribution of links among the pixels within the area. The S mall, Medium, and Large

network configurations have a high density of links along the edge of the network, but rel-

atively low density near the center of the two networks. The S mall network configuration

has the lowest median PSNR and highest average RMSE. This is expected since the area

near the center of the S mall network has very few links compared to the other network

configurations. The Medium network configuration, while does not perform as well at the

All network configuration, is still able to provide position estimations with no more than 1

extra ft average RMSE using the Gaussian estimation technique. The median PSNR for the

Medium network configuration is comparable with the Large network configuration, being

no more than 3 dB less than the Large network configuration and occasionally even having

higher PSNR values.

When comparing a moving target with respect to pace, the average RMSE generally

decreases and median PSNR increases as the target moves slower. This is expected since

the target covers less of an area while each transceiver transmits its RF signal for one frame

of data. The RMSE does increase as the target moves faster, but the difference on average

is less than 1.5 ft between the slow pace and the fast pace.

When comparing a moving target with respect to pattern, there is little difference

in image quality between each pattern. The median PSNR and RMSE are generally the

same for each pattern, regardless of the network configuration. Pattern 3 has slightly

a lower average RMSE than the other two patterns for the S mall and Medium network
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configurations. However, this is expected because the target does not traverse through the

second individual network for Pattern 3 in the S mall and Medium network configurations.

Fig. 4.73 and Fig. 4.74 show the median PSNR and median SNR from all simulated

and experimental moving target data, respectively. In simulations, the One network

configuration has the highest median PSNR. The All network configuration has the

highest median PSNR for experimental data, although Fig. 4.74 shows that overall each

network configuration has very similar median PSNR values. Fig. 4.75 and Fig. 4.76 show

the average RMSE using each estimation technique from all simulated and experimental

moving target data, respectively. The Gaussian estimation technique provides the lowest

average RMSE out of the three position estimation techniques. Overall, the All network

configuration provides the lowest average RMSE. However, the Medium, Large, All, and

One network configurations all have an average RMSE within 1 ft of each other.
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Figure 4.73: Median PSNR and SNR of all simulated moving target for each network

configuration.
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Figure 4.74: Median PSNR and SNR of all experimental moving target for each network

configuration.
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Figure 4.75: Average RMSE of all simulated moving target for each network configuration.
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Figure 4.76: Average RMSE of all experimental moving target for each network

configuration.
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4.3.4.4 Higher Frame Rates.

While not thoroughly investigated in this research, the higher frame rates from having

multiple WSNs compared to one WSN can also be used to improve image quality. Higher

frame rates from a WSN allows for more data to be captured in the same amount of time.

This higher rate may be required for real-time applications. However, higher frame rates

can also help in situations when real-time applications are not required.

For example, suppose there is a situation that requires an update only every second.

The traditional RTI network with one WSN presented in this research has an average frame

rate of 0.86 frames per second. This is less than the one frame per second required.

However, the RTI networks with two WSNs presented in this research have an average

frame rate of 2.22 frames per second. Since the situation requires only updates every

second, these RTI networks can stack multiple frames of RSS data together prior to

computing an attenuation image. Results from stationary target data in Section 4.3.1 has

shown the capabilities of reducing noise by stacking up to 60 frames of data together. These

RTI networks may not be able to collect that many frames within a second, but Fig. 4.77

shows an example of experimental moving data where each frame of RSS data is rounded

to the nearest second from which it is obtained. For every second, there are between 1 to 3

frames of RSS data that is averaged prior to generating an estimated attenuation image. The

Gaussian kernel estimation technique is applied and target position is estimated. Note in

Fig. 4.77 that averaging just 1 to 3 frames of data can help reduce and remove bad position

estimates.
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image.
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V. Conclusion and Future Work

T
his chapter summarizes the research and presents the conclusion to this thesis.

Recommendations for further research are also discussed.

5.1 Summary

RTI is a promising and emerging DFPL technology that has numerous potential

applications in the areas of smart homes, health care, security, and emergency situations.

The basic concept of RTI and how to utilize shadowing effects on RSS between transceivers

in a WSN to map an attenuation image is discussed in Chapter II. Various measurement

models, weight models, noise models, and regularization techniques have been proposed

to create the most accurate attenuation image.

The goal of this research is to determine the applicability and characterize the

capabilities of using multiple WSNs for RTI to address three major limitations with a

large-scale RTI network. Using 70 wireless transceivers to cover an area no greater than

19 ft × 16 ft, Chapter III explains the metrics and methodology used to characterize and

compare the traditional RTI network with one WSN to mnRTI that combines data from

multiple WSNs. Five different network configurations are examined. 5000 simulations

and 135 experiments are conducted for a stationary target. 4500 simulations and 405

experiments are conducted for a moving target. These simulations and experiments with

real transceivers in different network configurations between one WSN and two WSNs are

tested to compare with theoretical results. The three metrics used to compare the traditional

RTI method with mnRTI are frame rate, computational complexity, and image quality.

Experimental results show that mnRTI with two WSNs and 35 transceivers in each

network can provide an updated attenuation image on average of 2.22 frames per second. A

traditional RTI network with one WSN and 70 transceivers provides an updated attenuation
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image on average of 0.86 frames per second. This represents a 158% increase in attenuation

image updates for mnRTI with two WSNs over the traditional RTI network. Using mnRTI

with two WSNs is also computationally less complex than traditional RTI since there are

less unique links to compute. Depending on the size and number of pixels within the

network area, simulating two WSNs provide between 1.80 to 3.05 times less computational

complexity than using one WSN. Using the same number of pixels, this represents a 44%

reduction in computational complexity.

As for image quality, using SNR to compare image quality between each network

configuration is inconclusive. The difference in SNR is small or inconsistent between

each network. PSNR, however, is a good metric to quantify image quality. Higher

PSNR corresponds with better position estimates and lower RMSE. In terms of position

estimation techniques, the 1-D projection estimation technique yields the highest average

RMSE in comparison to the other two position estimation techniques. The Gaussian

kernel estimation technique helps smooth the attenuation image and suppress noisy spikes,

providing the lowest average RMSE.

For a stationary target, the One network configuration always has the best median

PSNR because the target is stationary and the network has the most links traversing through

the target. However, the Medium, Large, and All network configurations generally produce

similar position estimates as the One network configuration using the Gaussian estimation

technique with an average of less than 0.5 ft RMSE for simulations and less than 1 ft

RMSE for experiments. For a moving target, the highest median PSNR typically fluctuates

between the All network configuration and One network configuration, depending on the

pace, pattern, simulated target size, and noise level, although the difference is less than 3

dB. The All network configuration generally has the lowest average RMSE when using the

Gaussian estimation technique compared to the other network configurations. However,

the difference in average RMSE is less than 1 ft between the Medium, Large, All, and One
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network configurations. With respect to pace, RMSE trends higher as the pace is faster.

This is expected since the faster the pace, the more area a target covers within one frame

of data. With respect to pattern, image quality is fairly consistent between each pattern.

Overall, tests show that mnRTI can provide similar or better image quality than traditional

RTI, as long as there is sufficient overlap between the two WSNs. The S mall and Medium

network configurations, which only has 2.5 ft and 4.5 ft of overlap between the two WSNs,

respectively, have a median PSNR within 5 dB and average RMSE within 1 ft of the Large,

All, and One network configurations.

The results from these preliminary experiments and simulations show that using

multiple WSNs can provide higher frame rates, lower computational complexities, and

similar or better image quality in terms of PSNR and position estimation accuracy. Also,

even though the primary goal of this research is to address the limitations of a large-scale

RTI network, the results in this research show that even small RTI networks can benefit

from using multiple WSNs as opposed to the traditional RTI method.

5.2 Recommendations For Future Work

The experiments conducted in this research used two WSNs in a controlled lab

environment with LOS transceivers. An attempt to apply this to a larger area can further

validate and present limitations to mnRTI. Applying other advance techniques in RTI, such

as KRTI [23], better transceivers, and cdRTI [16], will further explore the capabilities and

limitations of using multiples WSNs and make it even more robust. Also, basic position

estimation techniques are used in this research. Better algorithms and more sophisticated

estimation techniques can be applied to provide even better position estimates. Advanced

adaptive filters, such as the Kalman filter, can also be applied to detect and track multiple

targets [34].

Even though the All network configuration, which increases the distance between each

transceiver, generally provides the best image quality, there is a point when the distance
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between each transceiver is too great and will not have enough unique communication

links to accurately map each pixel within the network area. The number of transceivers in a

WSN also affects the computational complexity and frame rate. Decreasing the number of

transceivers and increasing the distance between each transceiver will increase the frame

rate, lower the computational complexity, and allow for a bigger coverage area. However,

lesser communication links also equate to lesser information of the area and potentially

a decrease in localization accuracy. Further research to determine the maximum distance

between transceivers and minimum number of transceivers in a WSN to still be able to

produce an accurate attenuation image will be important parameters in creating an optimal

WSN.

Finally, this research demonstrated the capabilities of using two WSNs, although the

concept also applies to more than two WSNs. Testing mnRTI with more than two WSNs

can further demonstrate the capabilities of mnRTI. This will become especially important

for very large-scale RTI applications, such as border patrol or base surveillance.
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